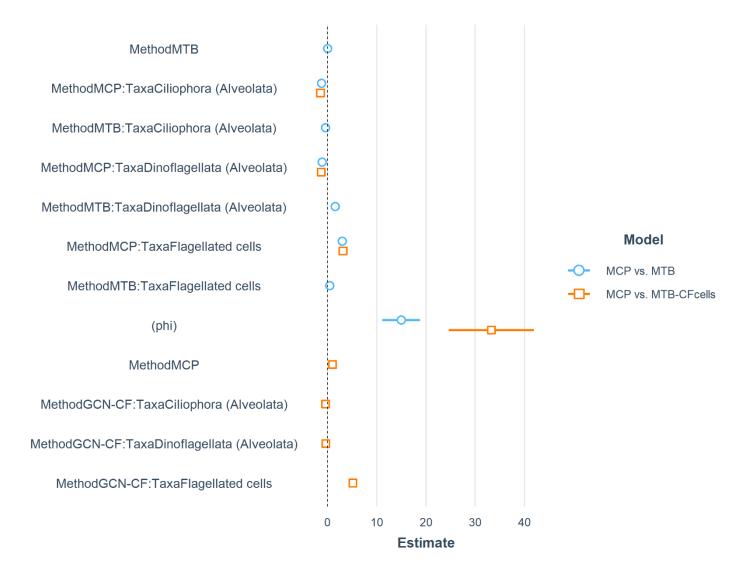
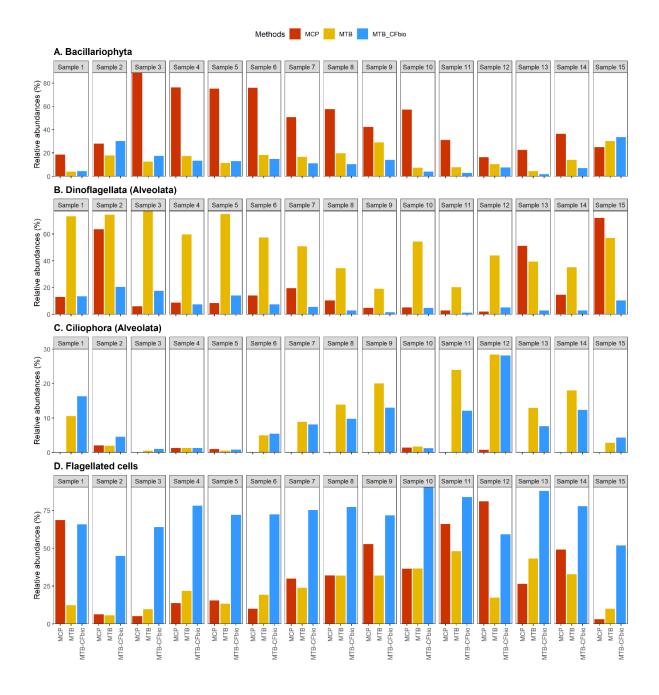

**Supplementary Table 1:** Summary of the different datasets utilized in this study regarding the identified number of species, cell C-content (proxy for biomass) and 18S rRNA GCNs, classified by microbial eukaryote groups determined in this study. MTB: Metabarcoding, MCP: Microscopy, GCN: Gene Copy Number, Sd: standard deviation.

|                                    | Species (Number) |     |       | Biomass [pg C.cell <sup>-1</sup> ]  (Median; mean ± Sd) |                      |                          | 18S rRNA gene [GCN.cell <sup>-1</sup> ]  (Median; mean ± Sd) |     |                            |  |
|------------------------------------|------------------|-----|-------|---------------------------------------------------------|----------------------|--------------------------|--------------------------------------------------------------|-----|----------------------------|--|
|                                    |                  |     |       |                                                         |                      |                          |                                                              |     |                            |  |
| Dataset                            | МТВ              | МСР | GCNdb | МТВ                                                     | МСР                  | GCNdb                    | MTB                                                          | МСР | GCNdb                      |  |
| Bacillariophyta<br>(Stramenopiles) | 355              | 88  | 14    | -                                                       | 37.6<br>151 ± 376    | 37.9;<br>235 ± 462       | -                                                            | -   | 166;<br>186688 ±<br>694605 |  |
| Ciliophora<br>(Alveolata)          | 190              | 1   | 12    | -                                                       | 719;<br>719 ± 0      | 21991 ;<br>22365 ± 15947 | -                                                            | -   | 71710;<br>97888 ± 86842    |  |
| Dinoflagellata<br>(Alveolata)      | 506              | 47  | 22    | -                                                       | 181;<br>5581 ± 30871 | 1260 ;<br>2444 ± 3974    | -                                                            | -   | 4919;<br>8170 ± 288688     |  |
| Flagellated cells                  | 833              | 29  | 17    | -                                                       | 5.54;<br>42 ± 132    | 15.7<br>522 ± 1914       | -                                                            | -   | 5.23 ;<br>70.2 ± 176       |  |




**Supplementary Figure 1:** Comparison of the cellular carbon content per taxa (pg C cell<sup>-1</sup>) between two-dataset used in this study: Microscopy (MCP) and Gene Copy Number dataset (GCN). Major single celled eucaryotic plankton groups described (A) Bacillariophyta (Stramenopiles), (C) Dinoflagellata, (B) Ciliophora and (D) Flagellated cells.

**Supplementary Table 2:** List of samples and sampling dates used in this study.


| Sample Name | Sampling date (DD/MM/YYYY) |  |  |  |  |  |
|-------------|----------------------------|--|--|--|--|--|
| Sample 1    | 02/05/2018                 |  |  |  |  |  |
| Sample 2    | 25/07/2018                 |  |  |  |  |  |
| Sample 3    | 29/08/2018                 |  |  |  |  |  |
| Sample 4    | 25/09/2018                 |  |  |  |  |  |
| Sample 5    | 24/10/2018                 |  |  |  |  |  |
| Sample 6    | 12/11/2018                 |  |  |  |  |  |
| Sample 7    | 18/12/2018                 |  |  |  |  |  |
| Sample 8    | 29/01/2019                 |  |  |  |  |  |
| Sample 9    | 20/02/2019                 |  |  |  |  |  |
| Sample 10   | 11/03/2019                 |  |  |  |  |  |
| Sample 11   | 08/04/2019                 |  |  |  |  |  |
| Sample 12   | 24/04/2019                 |  |  |  |  |  |
| Sample 13   | 08/05/2019                 |  |  |  |  |  |
| Sample 14   | 22/05/2019                 |  |  |  |  |  |
| Sample 15   | 04/06/2019                 |  |  |  |  |  |

**Supplementary Table 3:** Exponentially transformed results of the two beta regression models performed in this study to test the effect of CF for estimation of cell proportions. The taxonomic group percentages were modeled against the analysis method (A) Microscopy vs. metabarcoding and (B) Microscopy vs. corrected values using CF. The interaction between the analysis method and the specific phyla analyzed results are displayed as well. Estimations were calculated based on maximum likelihood. MCP: microscopy, MTB: metabarcoding, MTB\_CFcell: corrected metabarcoding values for cell proportions, CI: Confidence intervals.

|                                  | Cell relative abundances |                |                        |           |                 |                      |  |  |
|----------------------------------|--------------------------|----------------|------------------------|-----------|-----------------|----------------------|--|--|
|                                  |                          | [A] MCP vs. MT | [B] MCP vs. MTB_CFcell |           |                 |                      |  |  |
| Predictors                       | Estimates                | CI             | p                      | Estimates | CI              | p                    |  |  |
| (Intercept)                      | 0.22                     | 0.16 - 0.30    | <0.001                 | 0.07      | 0.05 - 0.10     | <0.001               |  |  |
| Method [MTB]                     | 1.00                     | 0.64 - 1.56    | 0.994                  |           |                 |                      |  |  |
| Method [MCP]                     |                          |                |                        | 2.74      | 1.86 - 4.04     | <0.001               |  |  |
| [MTB] : Ciliophora               | 0.67                     | 0.42 - 1.07    | 0.095                  |           |                 |                      |  |  |
| [MCP] : Ciliophora               | 0.29                     | 0.17 - 0.50    | <0.001                 | 0.24      | 0.16 - 0.37     | <0.001               |  |  |
| [MTB_CFcell] : Ciliophora        |                          |                |                        | 0.66      | 0.41 - 1.07     | 0.090                |  |  |
| [MTB] : Dinoflagellata           | 4.78                     | 3.19 - 7.17    | <0.001                 |           |                 |                      |  |  |
| [MCP] : Dinoflagellata           | 0.34                     | 0.20 - 0.56    | <0.001                 | 0.29      | 0.19 - 0.43     | <0.001               |  |  |
| [ MTB_CFcell ] * Dinoflagellata  |                          |                |                        | 0.71      | 0.44 - 1.13     | 0.150                |  |  |
| [MTB] : Flagellated cells        | 1.55                     | 1.01 - 2.37    | 0.043                  |           |                 |                      |  |  |
| [MCP] : Flagellated cells        | 19.72                    | 12.62 – 30.83  | <0.001                 | 23.13     | 16.82 - 31.80   | <0.001               |  |  |
| [ MTB_CFcell ] * Flagellated cel | lls                      |                |                        | 175.51    | 112.02 – 275.00 | <0.001               |  |  |
| Observations                     |                          | 120            |                        |           | 120             |                      |  |  |
| $\mathbb{R}^2$                   |                          | 0.844          |                        | 0.960     |                 |                      |  |  |
| Phi (φ)                          |                          | 14.960         | 1.57E <sup>-14</sup>   |           | 33.227          | 4.67E <sup>-14</sup> |  |  |



**Supplementary Figure 2:** Visualization of the results (Supplementary table 3) of the two generalized linear modeling based on beta distribution performed in this study to test the effect of CF for estimation of cell proportions. The taxonomic group percentages were modeled against the analysis method (A) Microscopy vs. metabarcoding and (B) Microscopy vs. corrected values using CF. The interaction between the analysis method and the specific phyla analyzed results are displayed as well. Estimations were calculated based on maximum likelihood. MCP: microscopy, MTB: metabarcoding, MTB\_CFcell: corrected metabarcoding values for cell proportions.




**Supplementary Figure 3:** Comparison between relative abundances (%) in each of the 15 marine water samples per plankton group estimated biomass from inverted microscopy (MCP Biomass [pgC.taxa<sup>-1</sup>]; red), reads from DNA metabarcoding (MTB; yellow), and the results of the corrected biomass to estimate the carbon content per taxa using MCP datasets mean C-biomass values (MTB\_CFbio). (A) Bacillariophyta, (B) Dinoflagellata and (C) Flagellated cells. MCP: Microscopy, MTB: Metabarcoding, MTB\_CFbio: metabarcoding corrected values for biomass.

**Supplementary Table 4:** Exponentially transformed results of the three beta regression models performed in this study to test the effect of CF for the estimations of C-biomass proportions. The taxonomic group percentages were modeled against the analysis method (A) Microscopy vs. metabarcoding and (B) Microscopy vs. corrected values using MTB median C-content and (C) Microscopy vs. corrected values using MCP median C-content. The interaction between the analysis method and the specific phyla analyzed results are displayed as well. Estimations were calculated based on maximum likelihood. MCP: microscopy, MTB: metabarcoding, MTB\_CFbio: corrected metabarcoding values for biomass proportions, CI: Confidence intervals.

## **Biomass Relative Abundances**

| [A] MCP vs. MTB |                                                   |                                                                                                                                                                                                                                                                            |                                                                                                                                   | [B] MCP vs. MT_CFbio                                                                                                                                             |                                                                                                                                                                                                 |  |  |
|-----------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Estimates       | CI                                                | p                                                                                                                                                                                                                                                                          | Estimates                                                                                                                         | CI                                                                                                                                                               | p                                                                                                                                                                                               |  |  |
| 0.90            | 0.64 – 1.26                                       | 0.534                                                                                                                                                                                                                                                                      | 0.90                                                                                                                              | 0.65 – 1.24                                                                                                                                                      | 0.506                                                                                                                                                                                           |  |  |
| 0.28            | 0.16 – 0.47                                       | <0.001                                                                                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                 |  |  |
| 0.10            | 0.06 - 0.18                                       | <0.001                                                                                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                 |  |  |
| 0.71            | 0.40 – 1.26                                       | 0.235                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                 |  |  |
| 0.30            | 0.18 - 0.50                                       | <0.001                                                                                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                 |  |  |
| 4.23            | 2.51 – 7.14                                       | <0.001                                                                                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                 |  |  |
| 0.53            | 0.33 – 0.87                                       | 0.012                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                 |  |  |
| 1.48            | 0.86 – 2.55                                       | 0.153                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                 |  |  |
|                 |                                                   |                                                                                                                                                                                                                                                                            | 0.23                                                                                                                              | 0.14 - 0.38                                                                                                                                                      | <0.00                                                                                                                                                                                           |  |  |
|                 |                                                   |                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                 |  |  |
|                 |                                                   |                                                                                                                                                                                                                                                                            | 0.10                                                                                                                              | 0.05 - 0.17                                                                                                                                                      | <0.00                                                                                                                                                                                           |  |  |
|                 |                                                   |                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                 |  |  |
|                 |                                                   |                                                                                                                                                                                                                                                                            | 0.29                                                                                                                              | 0.18 – 0.48                                                                                                                                                      | <0.00                                                                                                                                                                                           |  |  |
|                 |                                                   |                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                 |  |  |
|                 |                                                   |                                                                                                                                                                                                                                                                            | 0.53                                                                                                                              | 0.33 – 0.84                                                                                                                                                      | 0.007                                                                                                                                                                                           |  |  |
|                 |                                                   |                                                                                                                                                                                                                                                                            | 0.78                                                                                                                              | 0.44 – 1.38                                                                                                                                                      | 0.390                                                                                                                                                                                           |  |  |
|                 |                                                   |                                                                                                                                                                                                                                                                            | 0.77                                                                                                                              | 0.44 – 1.36                                                                                                                                                      | 0.372                                                                                                                                                                                           |  |  |
|                 |                                                   |                                                                                                                                                                                                                                                                            | 10.86                                                                                                                             | 6.41 – 18.39                                                                                                                                                     | <0.00                                                                                                                                                                                           |  |  |
|                 | 120                                               |                                                                                                                                                                                                                                                                            |                                                                                                                                   | 120                                                                                                                                                              |                                                                                                                                                                                                 |  |  |
|                 | 0.590                                             | ı                                                                                                                                                                                                                                                                          |                                                                                                                                   | 0.703                                                                                                                                                            | 6.64E                                                                                                                                                                                           |  |  |
|                 | Estimates 0.90 0.28 0.10 0.71 0.30 4.23 0.53 1.48 | Estimates       CI         0.90       0.64 - 1.26         0.28       0.16 - 0.47         0.10       0.06 - 0.18         0.71       0.40 - 1.26         0.30       0.18 - 0.50         4.23       2.51 - 7.14         0.53       0.33 - 0.87         1.48       0.86 - 2.55 | Estimates         CI         p           0.90         0.64 - 1.26         0.534           0.28         0.16 - 0.47         <0.001 | Estimates         CI         p         Estimates           0.90         0.64 - 1.26         0.534         0.90           0.28         0.16 - 0.47         <0.001 | Estimates         CI         p         Estimates         CI           0.90         0.64 - 1.26         0.534         0.90         0.65 - 1.24           0.28         0.16 - 0.47         <0.001 |  |  |



**Supplementary Figure 4:** Visualization of the results (Supplementary table 4) of the two generalized linear modeling based on beta distribution performed in this study to test the effect CF for the estimations of C-biomass proportions. The taxonomic group percentages were modeled against the analysis method (A) Microscopy vs. metabarcoding and (B) Microscopy vs. corrected values using MCP median C-content. The interaction between the analysis method and the specific phyla analyzed results are displayed as well. Estimations were calculated based on maximum likelihood. MCP: microscopy, MTB: metabarcoding MTB\_CFbio: corrected metabarcoding values for biomass proportions.