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Abstract
High-throughput sequencing (HTS) studies on invertebrates commonly use ethanol as the main sample fixative (upon collection) 
and preservative (for storage and curation). However, alternative agents exists, which should not be automatically neglected when 
studies are newly designed. This review provides an overview of the application of propylene glycol (PG) in DNA-based studies of 
invertebrates, thus to stimulate an evidence-based discussion.

The use of PG in DNA-based studies of invertebrates is still limited (n = 79), but a steady increase has been visible since 2011. 
Most studies used PG as a fixative for passive trapping (73%) and performed Sanger sequencing (66%; e.g. DNA barcoding). More 
recently, HTS setups joined the field (11%). Terrestrial Coleoptera (30%) and Diptera (20%) were the most studied groups. Very 
often, information on the grade of PG used (75%) or storage conditions (duration, temperature) were lacking. This rendered direct 
comparisons of study results difficult, and highlight the need for further systematic studies on these subjects.

When compared to absolute ethanol, PG can be more widely and cheaply acquired (e.g. as an antifreeze, 13% of studies). It also 
enables longer trapping intervals, being especially relevant at remote or hard-to-reach places. Shipping of PG-conserved samples is 
regarded as risk-free and is authorised, pinpointing its potential for larger trapping programs or citizen science projects. Its property 
to retain flexibility of morphological characters as well as to lead to a reduced shrinkage effect was especially appraised by inte-
grative study designs. Finally, the so far limited application of PG in the context of HTS showed promising results for short read 
amplicon sequencing and reduced representation methods. Knowledge of the influence of PG fixation and storage for long(er) read 
HTS setups is currently unavailable.

Given our review results and taking difficulties of direct methodological comparisons into account, future DNA-based studies of in-
vertebrates should on a case-by-case basis critically scrutinise if the application of PG in their anticipated study design can be of benefit.
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Introduction
DNA-based high-throughput sequencing (HTS) ap-
proaches such as DNA metabarcoding have lately revolu-
tionised our ability to comparatively assess and monitor 
biodiversity over large geographical scales and at an un-
precedented rate (Taberlet et al. 2012; Aylagas et al. 2016; 
Leese et al. 2018; Compson et al. 2020). Of particular 
relevance in practice are declining costs per sample, 
which are driven, among other things, by laboratory au-

tomatisation, comprehensive parallelisation of samples 
(i.e. multiplexing) and ever decreasing sequencing ex-
penses (Leese et al. 2018). On the other hand, large-scale 
environmental programmes require a high number of ap-
propriately conserved samples. Assuming that the num-
ber of samples to be processed within a scientific study 
or environmental program will continue to increase, also 
field costs per sample will account for an increasingly 
large financial share. It is therefore important to develop 
strategies to counterbalance the increasing costs of field 
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work, e.g. by reducing the time spent in the field, lower-
ing hands-on times per sample by automatisation or ad-
justing collection and storage conditions (Holderegger et 
al. 2019; Ssymank et al. 2018).

The fixative (or trapping / killing agent) is a crucial 
parameter for DNA-based studies as it has to secure the 
integrity of the DNA from the very beginning (see e.g. 
Stein et al. 2013). Simultaneously, its costs are directly 
linked to the number of samples to be processed and to 
the volumes used. It is not unusual for larger studies to 
require several hundred to thousand litres of fixative. Liu 
et al. (2020) identified lab grade ethanol (>95%) to be the 
fixative of choice in the majority of DNA metabarcoding 
studies conducted between 2015 and 2019. Yet, lab grade 
ethanol is very expensive, has a high volatility, is not al-
ways easy to obtain and due to its flammability can cause 
problems during sample transportation and shipping. Al-
ternative fixatives exist but are not widely applied, e.g. 
due to misunderstandings of chemical properties, tradi-
tion or simply lack of knowledge and availability (Weeks 
Jr and McIntyre 1997; Thomas 2008; Nagy 2010; Stoeck-
le et al. 2010; Gossner et al. 2016; Mahon et al. 2017).

As such an alternative, propylene glycol (or pro-
pane-1,2-diol; here further abbreviated as PG) has a 
number of characteristics that potentially render it bene-
ficial in large-scale DNA-based HTS bioassessment and 
biomonitoring programmes: (i) low acquisition cost but 
high general availability, as it can be bought, for exam-
ple, as low-budget antifreeze in specialist car dealers or 
as an additive from the cosmetic or food industry (addi-
tive E1520), (ii) non-toxicity (i.e. considered as a GRAS 
(generally regarded as safe) material), (iii) very low vol-
atility, (iv) environmental safety, (v) risk-free transport of 
samples according to the regulations of the International 
Air Transport Association (IATA), and (vi) ability to en-
sure DNA integrity as well as to preserve most morpho-
logical characteristics (Thomas 2008; Nagy 2010).

Propylene glycol is a well-established agent in molec-
ular cryobiology, notably used for the cryopreservation 
of sperms and cell cultures (Bank and Brockbank 1987; 
Hezavehei et al. 2018). For the study of invertebrates, it 
has been proposed as the chemical of choice in a stand-
ardised pitfall trap design for monitoring ground-active 
arthropod biodiversity (Brown and Matthews 2016; Hoh-
bein and Conway 2018) and is applied as such within the 
North American National Ecological Observatory Net-
work (NEON; Gibson et al. 2012; Hoekman et al. 2017) 
and the carabidologist community (Kotze et al. 2011). PG-
based pitfall traps were also proposed as a standard and 
minimally disturbing method to investigate the subterra-
nean fauna of the mesovoid shallow substratum (López 
and Oromí 2010; emptied every six months). Since 2001, 
PG fixation is applied by the Soybean Aphid Suction Trap 
Network (STN; Lagos-Kutz et al. 2020) for monitoring 
the ‘aerobiological soup’. In the context of environmental 
genomic studies, Matos-Maraví et al. (2019) proposed PG 
as the fixative of choice for mass samples originating from 
pitfall traps and flight interceptions, but neither tests nor 
metadata had been published along with this statement.

The aim of this review is to summarise the findings 
of studies investigating the application of PG for DNA-
based analyses of invertebrates. We will distinguish its 
application as a fixative (during sample collection) and 
as a preservative (for sample storage and curation). The 
collated information should help to transfer the available 
knowledge to the wider community, stimulating an evi-
dence-based discussion on how to further reduce costs for 
DNA-conform sample collection and curation in larger 
environmental programmes by exploring alternative fixa-
tion and preservation agents.

Material and methods

Literature search

A topical core literature research was conducted on 
07.10.2020 within the ISI Web of Science (WoS) and 
screening ‘all databases’. The following search strings 
were investigated: (1) “propylene glycol” AND “DNA” 
AND “invertebrate*”, (2) “propylene glycol” AND 
“DNA” AND “insect”, (3) “propane-1,2-diol” AND 
“DNA” AND “invertebrate*” and (4) “propane-1,2-diol” 
AND “DNA” AND “insect”. On the very same day, and 
because the WoS search only will detect literature records 
which are ISI-listed and only will retrieve hits in case the 
search string terms appear in the title, abstract, topic or as 
keywords, a complementing Google Scholar (GS) search 
was performed (as e.g. proposed by Piasecki et al. 2018). 
The GS search enables in-text searches and will also re-
trieve grey literature records such as field, laboratory and 
shipping protocols, pre-prints, theses and agency reports. 
The same four search strings were entered, selecting the 
‘exclude patents’ option in GS. The keyword ‘sperm*’ 
was excluded in all searches as PG is frequently applied 
during the cryopreservation of sperms which would have 
resulted in a very high number of irrelevant hits. The key 
word ‘invertebrate*’ was excluded in the search strings 
(2) and (4) to not again screen insect literature records 
retrieved from (1) and (3).

The four search strings yielded the following number 
of literature records within the ISI WoS: (1) 20, (2) 8, 
(3) 0 and (4) 1. From those, only records which transpar-
ently stated the application of PG during specimen han-
dling have been considered, resulting in a total of only 
12 studies. Google Scholar search strings yielded the fol-
lowing constant number of literature records, regardless 
of whether the search was performed via two different 
IP-addresses in two countries (Luxembourg and Germa-
ny), within two different Google profiles, using a private 
browser window or being logged on/off from personal 
Google profiles: (1) 509, (2) 1930, (3) 23 and (4) 432.

Results

The majority of studies had to be excluded, a) because they 
used PG as a trapping material for invertebrates but only 
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Figure 1. Cumulated number of studies which have used pro-
pylene glycol either as a fixative or preservative in the DNA-
based analysis of invertebrates. Arranged by the taxonomic 
groups in focus. In cases where several of the indicated groups 
were targeted, the study was placed into the category “others”. 
N = 79, as of 07.10.2020.

cited literature referring to the application of DNA-based 
tools, or b) as they referred to yeast species molecular-
ly analysed. Furthermore, reviews or studies which only 
dealt with the DNA analysis of e.g. parasites or gut con-
tents of invertebrates were omitted, but will be discussed. 
Doctoral and master theses which were subsequently pub-
lished as scientific articles were counted as a single entry.

A total of 79 publications was retrieved (Table 1, Fig. 1). 
Although the restricted number of literature records ob-
tained exemplifies that the number of studies using PG as 
a fixative or preservative for subsequent molecular DNA-
based analysis of invertebrates is not widely established 
(but an increase can be noted), still some patterns can be 
inferred. The analysed studies almost exclusively investi-
gated terrestrial taxa, with Robinson et al. (2020; freshwa-
ter bulk sample) and Cordero et al. (2017; aquatic insects) 
being notable exceptions. The first studies using PG for 
DNA-based analysis of invertebrates originate from 2003 
and 2005. Two of them focussed on honey bees (Rubink 
et al. 2003; Coulson et al. 2005) while Carter (2003) per-
formed a comprehensive study on ‘The effects of preserva-
tion and conservation treatments on the DNA of museum 
invertebrate fluid preserved collections’ using a terrestrial 
isopod species as reference. Those studies were accompa-
nied by early publications on arachnids (Vink et al. 2005) 
and hemipterans (Scott et al. 2007). From today’s perspec-
tive, studies focussing on Coleoptera (n = 24 studies, 30%) 
and Diptera (20%) dominated the dataset (Fig. 1). Although 
Diptera was the second largest of the individual groups re-
trieved, the first study was only published in 2012 and most 
of the records originate from the same team of authors.

In the majority of study designs, PG was used as a fixa-
tive for passive trapping (n = 53, 73%), and less frequent-
ly as a fixative upon manual collection of living speci-
mens (32%). Either food-/laboratory-grade PG (14%; 
Sigma-Aldrich, Ajax FineChem, Neogen, Herrlan-PSM, 
Old World Industries, Better World Manufacturing, 
ClassiKool Ltd.) or PG-based antifreezes (13%; Lowtox, 
Absolute Zëro RV Waterline, Sierra, Uni-Gard) were used, 
but in 75% of all studies no further chemical properties or 
customer specifications were provided. PG concentrations 
were in most cases higher than 95% (for 70% of study 
designs), in fewer instances between 50–75% (16% study 
designs) or below 50% (11% study designs). Information 
on storage conditions for PG-preserved specimens was 
also very scarce: 27% of studies did not report any storage 
duration and for 41% of studies no storage temperatures 
were provided. Otherwise, PG-preserved specimens were 
stored for quite variable time spans, i.e. for more than half 
a year (10%), 1–6 months (10%), 1–4 weeks (20%), be-
low 1 week (17%) or even for shipping only (17%, var-
iable duration). If information was provided, specimens 
most often were stored at RT (28%), less frequently fro-
zen (17%) or refrigerated (10%). Sanger sequencing was 
the most frequent evaluation method (66%), followed by 
PCR-based analyses (16%), HTS (11%) and microsatel-
lite genotyping (9%). Studies performing two conceptual 
approaches, e.g. Sanger sequencing of COI and COI me-
tabarcoding, were included in both categories.

Discussion

Application of propylene glycol as a fixative

Our results indicate that PG is widely applied as a fixative 
in a variety of passive trapping methods (e.g. pan trap, 
funnel trap, aerial pitfall trap; baited and unbaited) and 
for various organism groups (mainly beetles and flies, but 
also spiders, bees and aphids). Likewise, actively collect-
ed single specimens or – in a few cases – invertebrate 
bulk samples were fixed with PG (e.g. Bowser et al. 2017, 
2019; Cordero et al. 2017; Jusino et al. 2019; Robinson 
et al. 2020; Liu et al. 2020). This taxonomically wide-
spread application mimics the use of PG in traditional 
non-DNA-based research and application domains (pri-
marily pitfall trapping; see Hohbein and Conway 2018) 
now entering the molecular field. Research communities 
around aphids, spiders, carabids and tephritid fruit flies 
contributed most of the studies.

Amongst others, passive trapping intervals are deter-
mined by the accessibility of the sampling location, the 
volume of the trapping containers, the evaporation rate of 
the fixative and local environmental parameters such as 
humidity, temperature, rainfall or UV-exposure. In case of 
excessive heat and high temperatures (arid and hot), traps 
with ethanol or (salted) water frequently dry out and either 
have to be visited and re-filled more frequently, or short(er) 
trapping periods have to be chosen. The evaporation rate 
of PG is >500-times lower than for ethanol (Moreau et al. 
2013). As such a low volatile agent, PG-equipped traps 
can retain their volumes more or less constant over sever-
al weeks to months (Hohbein and Conway 2018). How-
ever, long-term UV exposition may decompose PG into 
water, acetone and 2-propanol (i.e. isopropanol) (Nakaha-
ma et al. 2019). In interaction with its hygroscopic nature, 
even apparently large fixative volumes at the end of a long 
trapping period under summer conditions might contain a 
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Table 1. Overview of studies which have used propylene glycol either as a fixative or preservative for the DNA-based analysis of inver-
tebrates. RT = room temperature; PG = propylene glycol; n.a. = not applicable or not available. Studies found by both the ISI Web of Sci-
ence and Google Scholar searches, are marked in bold. All others were only detected by the latter search engine. N = 79, as of 07.10.2020.

Study Year Taxon DNA-based 
approach

PG specificities Fixation step Preservation step Central outcomes
Condition(s) Duration Condition(s) Duration

Carter (2003) 2003 Crustacea 
(Isopoda)

PCR-based 
visualisation 
(16S, 18S)

Propylene glycol specimens 
directly placed 

in pure PG

12 months (RT) double-stranded DNA profiles of 
PG-conserved specimens were 

sufficient for PCR, but likely not 
adequate for long-term storage of 

museum samples
Rubink et al. 
(2003)

2003 Hymenoptera 
(Apidae)

Microsatellite and 
CytB fragment 

analyses

Low-toxicity 
antifreeze 
(Lowtox, 

Prestone Inc., 
Danbury, CT)

specimens 
directly placed 

in pure PG

5, 20 or 90 
days (20 °C 
or 40 °C)

95% ethanol up to 4 
months 

(4–6 °C)

nuclear and mtDNA were 
amplifiable even at the most 
extreme conditions (90 days, 
40 °C), although a slightly 

decreasing trend was observed
aerial pitfall 
trap with PG

3 weeks

Coulson et al. 
(2005)

2005 Hymenoptera 
(Apidae)

CytB, 16S and 
COI fragment 

analysis

Propylene glycol baited aerial 
pitfall trap with 

50% PG and 
soap

ca. weekly 
for 8 months

95% ethanol n.a. well preserved for molecular 
analysis

Vink et al. 
(2005)

2005 Arachnida 
(Aranea, 

Scorpiones)

Actin and COI 
fragment analysis

Propylene 
glycol (99.5+% 

laboratory grade, 
Sigma-Aldrich)

specimens 
directly placed 

in pure PG

6 weeks 
(40 °C, 

19–24 °C, 
2–4 °C, 

-20 °C or 
-40 °C; 
dark)

95% ethanol 
(4 °C)

1 day PG (and RNAlater) significantly 
better preserved nuclear 

and mtDNA than ethanol at 
various concentrations and in 

different study designs: mtDNA 
successfully amplified under 
most extreme conditions (6 

weeks, 40 °C); ncDNA for small 
soft-bodied species only at room 

temperature or lower, and for 
large heavily sclerotized species at 

2–4 °C or lower
Hendrixson 
(2006)

2006 Arachnida 
(Aranea)

Sanger sequencing 
of COI and 28S

Propylene glycol pan trap with 
1:1 PG and 

100% ethanol

each 2 weeks 
for 2 months

100% ethanol, 
than 80% 
ethanol 
(-20 °C)

n.a. well preserved for morphological 
and molecular analyses

Scott et al. 
(2007)

2007 Hemiptera 
(Aleyrodidae)

Sanger sequencing 
of COI

Propylene glycol specimens 
directly placed 

in pure PG

n.a. well preserved for morphological 
and molecular analyses

Gallego 
and Galián 
(2008)

2008 Coleoptera 
(Curculionidae)

Sanger sequencing 
of COI

Propylene glycol funnel trap with 
pure PG

1 week absolute 
ethanol

n.a. well preserved for morphological 
and molecular analyses, in 

particular in periods of no rainfall
Villacorta et 
al. (2008)

2008 Crustacea 
(Amphipoda)

Sanger sequencing 
of COI, COII 

and H3

Propylene glycol baited pitfall 
trap with PG

several 
weeks to 
months

ethanol n.a. well preserved for morphological 
and molecular analyses

Castalanelli 
et al. (2010)

2010 Coleoptera Sanger sequencing 
of mtDNA, single 

and multi-copy 
ncDNA genes

Propylene glycol specimens 
directly placed 

in 20% PG

n.a. ethanol n.a. very fast DNA isolation (ranging 
from 2–20 minutes); well preserved 

for parallel morphological and 
genetic analyses; specimens stored 

in 20% PG and ethanol did not 
differ from specimens stored in 

other preservatives
Horn (2010) 2010 Hymenoptera 

(Anthophila)
Sanger sequencing 

of COI
Propylene glycol pan trap with 

75% PG
each two 

weeks
95% ethanol 
(refrigerator)

n.a. specimens suitable for barcoding

Malumbres 
Olarte (2010)

2010 Arachnida 
(Aranea)

Sanger sequencing 
of COI

Mono-propylene 
glycol

pitfall trap with 
pure PG

2 weeks over 
3 months

95% ethanol 
(-20 °C)

n.a. well preserved for morphological 
and molecular analyses

Shoda-
Kagaya et al. 
(2010)

2010 Coleoptera 
(Curculionidae)

Microsatellite 
genotyping

Propylene glycol pheromone-
baited trap with 

PG

n.a. 99.5% ethanol 
(-20 or 4 °C)

n.a. specimens suitable for 
microsatellite analysis

Sonoda et al. 
(2010)

2010 Arachnida 
(Aranea)

Sanger sequencing 
of COI and 

restriction site 
analysis

Propylene glycol pitfall trap with 
20% PG

1 or 2 weeks 70% ethanol months well preserved for morphological 
and molecular analyses

Boyer et al. 
(2011)

2011 Annelida 
(Oligochaeta)

Sanger sequencing 
of COI and 16S

Propylene glycol specimens 
directly placed 
in 98% ethanol

n.a. PG n.a. well preserved for morphological 
and molecular analyses

Stevens et al. 
(2011)

2011 Coleoptera 
(Tenebrionidae, 
Bostrichidae)

Arginine kinase 
fragment analysis

99.5% Propylene 
glycol (Sigma-
Aldrich Inc, St. 

Louis, MO)

specimens 
directly 

placed in PG 
(100%, 80%, 
50% diluted 
or with PBS, 
with / without 
Triton-X 100)

3, 7 or 14 
days (30 °C)

absolute 
ethanol 
(Sigma-
Aldrich, 

molecular 
grade) 

(-80 °C)

n.a. treatments with specimens 
stored in mixtures containing 

PG produced significantly less 
successful PCR results. PCR 

success was higher for specimens 
stored in pure PG than for 80% 

PG

99.7% propylene 
glycol (Ajax 

FineChem Pty 
Ltd, Taren Point 
NSW, Australia)

Lindgren funnel 
trap with PG

1 week specimens in PG produced 
significantly less successful PCR 
results than specimens maintained 

in PBS or dry

Castalanelli 
et al. (2012)

2012 Coleoptera 
(Dermestidae)

Sanger sequencing 
of COI, CytB and 

18S

Propylene glycol baited lure trap 
with 20% PG

two months rinsed with 
sterile water, 
rinsed with 

70% ethanol 
and stored in 
95% ethanol

n.a. (-20 °C) well preserved for morphological 
and molecular analyses
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Study Year Taxon DNA-based 
approach

PG specificities Fixation step Preservation step Central outcomes
Condition(s) Duration Condition(s) Duration

Gibson et al. 
(2012)

2012 Coleoptera 
(Carabidae)

Sanger sequencing 
of COI

Propylene glycol pitfall trap with 
66% PG

1 week 75% ethanol, 
or rinsed in 
water and 
stored in 

95% ethanol 
(-20 °C)

n.a. well preserved for morphological 
and molecular analyses

Gruber et al. 
(2012)

2012 Hymenoptera 
(Formicidae)

Sanger sequencing 
of COI

Propylene glycol pitfall trap with 
33% PG

1 day 95% ethanol 
(4 °C)

n.a. well preserved for morphological 
and molecular analyses

Knee et al. 
(2012), Knee 
(2012)

2012 Arachnida (Acari) Sanger sequencing 
of COI and 28S

Propylene glycol baited Lindgren 
funnel trap 

with PG

~2 weeks 95% ethanol 
(-20 °C)

n.a. well preserved for morphological 
and molecular analyses

Pelletier et al. 
(2012)

2012 Hemiptera 
(Aphidae)

Sanger sequencing 
of COI

Propylene glycol trap with 50% 
PG with Bitrex 

and soap

each 2–3 
days for 2 

months

50% PG 
(4 °C)

up to 1 week PG concentration checked in 
the field remained in the range 

40–60%; collected material 
mostly suitable for morphological 

analysis, barcoding and RNA 
virus detection; although higher 

concentrations yielded better results
Renaud et 
al. (2012), 
Renaud 
(2012)

2012 Diptera (Muscidae) Sanger sequencing 
of COI

Propylene glycol 
(food quality)

pan trap with 
33% PG and 

soap

3–4 days n.a. n.a. handling of PG was problematic 
because treated as hazardous 

waste and forbidden to dispose 
in local septic system; specimens 

suitable for barcoding and 
morphological analysis

Schutze et al. 
(2012)

2012 Diptera 
(Calliphoridae, 

Fanniidae, 
Muscidae, 

Tephritidae)

Sanger sequencing 
of COI

Propylene glycol lure-baited 
hanging trap 
with pure PG

n.a. assumably 
pure PG

n.a. easy transport of samples; >90% 
of specimens morphologically 

characterised and barcoded

Vélez et al. 
(2012)

2012 Myriapoda 
(Chilopoda)

Sanger sequencing 
of COI and 16S

Propylene glycol specimens 
directly 

placed in 95% 
or 75–80% 

ethanol

n.a. PG, than 96% 
ethanol

n.a. effective shipping of samples; 
well preserved for molecular 

analysis

Ferro and 
Park (2013)

2013 Coleoptera 
(Carabidae, 

Staphylinidae)

Sanger sequencing 
of COI

Propylene 
glycol (Neogen 

Corporation, 
Item No. 79231),

specimens 
directly placed 

in 100% 
ethanol

2 days 20%, 40%, 
60%, 80% 

and pure PG 
(21 °C)

up to 6 
months

positive PCR or sequencing 
results were obtained in all cases 

except for 20% PG

Krosch et al. 
(2013)

2013 Diptera 
(Tephritidae)

Microsatellite 
genotyping

Propylene glycol insecticide-
baited hanging 
trap with PG

n.a. effective shipping of samples; 
well preserved for morphological 

and molecular analyses
Moreau et 
al. (2013)

2013 Hymenoptera 
(Formicidae)

Long-wavelength 
rhodopsin and COI 
fragment analysis

100% food-
grade PG

specimens 
directly placed 

in pure PG

either remaining in PG for up to 10 months, 
or transferred into 95% ethanol after 6 

months (6+4 months storage time)

PG and ethanol allowed for 
the highest PCR success rates. 
PG-preserved samples showed 

comparatively high DNA 
concentrations even after 10 

months
Sikes and 
Stockbridge 
(2013), 
Stockbridge 
(2013)

2013 Mecoptera Sanger sequencing 
of COII

Propylene glycol 
based antifreeze 
(Sierra brand)

pitfall trap with 
PG

two weeks 100% ethanol 
(-70F)

n.a. well preserved for molecular 
analysis

Sim (2013) 2013 Arachnida 
(Aranea)

Sanger sequencing 
of COI, ITS and 

ND1

Propylene glycol pitfall and pan 
trap with 50% 

PG

3–4 days for 
2 weeks

95% ethanol 
(4 °C)

n.a. well preserved for morphological 
and molecular analyses

Boykin et al. 
(2014)

2014 Diptera 
(Tephritidae)

Sanger sequencing 
of COI, NAD4–3’, 
CAD, period, ITS1 

and ITS2

Propylene glycol insecticide-
baited hanging 
trap with PG

variable 100% ethanol n.a. effective shipping of samples; 
well preserved for morphological 

and molecular analyses

Endo et al. 
2014

2014 Coleoptera 
(Carabidae); 
Myriapoda; 
Collembola

Sanger sequencing 
of COI, ITS1 and 

ANT

Propylene glycol pitfall trap with 
PG:ethanol 

(1:1)

n.a. 100% 
molecular-

grade ethanol

n.a. well preserved for molecular 
analysis

Gómez 
(2014)

2014 Coleoptera 
(Carabidae)

Sanger sequencing 
of COI, CAD and 

28S

Propylene glycol pan trap with 
PG

n.a. suitable for all molecular 
investigations; however, higher 
amplification success when PG-
fixed specimens were dry pinned 

or transferred to 95% ethanol 
within 1–2 weeks

Chinvinijkul 
et al. (2015)

2015 Diptera 
(Tephritidae)

Sanger sequencing 
of ITS1

Propylene glycol specimens 
directly placed 
in 95% ethanol

n.a. pure PG n.a. effective shipping of samples; 
well preserved for molecular 

analysis
Fountain et 
al. (2015)

2015 Coleoptera 
(Curculionidae)

Sanger sequencing 
of COI, CytB and 

ITS2

Propylene glycol tarsal clips 
directly placed 

in PG

n.a. 95% ethanol 
(-20 °C)

n.a. well preserved for molecular 
analysis

Haase and 
Zielske 
(2015)

2015 Gastropoda 
(Caenogastropoda)

Sanger sequencing 
of COI, 16S and 

ITS2

Propylene glycol specimens 
directly placed 
in 70% ethanol

n.a. PG, than 96% 
ethanol

PG-
preservation 

only for 
shipping

effective shipping of samples; 
well preserved for morphological 

and molecular analyses

Höfer et al. 
(2015)

2015 Arachnida 
(Aranea)

Sanger sequencing 
of COI

Propylene glycol 
(technical grade, 
Herrlan-PSM)

specimens 
directly placed 
in pure, 90% or 

50% PG

1, 2 and 
4 weeks 

(refrigerator)

non-denatured 
96% ethanol

n.a. succesful barcoding under all 
conditions, but results potentially 

indicate a negative effect of 
water intrusion on PG-preserved 

specimens
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Study Year Taxon DNA-based 
approach

PG specificities Fixation step Preservation step Central outcomes
Condition(s) Duration Condition(s) Duration

pitfall trap 
with PG, 2.5% 
acetic acid and 

detergent

2 weeks over 
6 weeks

70–80% 
ethanol

n.a. traps with PG captured more 
species (at three sites and for the 
most abundant families), but PG 
was not selectively attractive for 

particular taxa
Leblanc et al. 
(2015)

2015 Diptera 
(Tephritidae)

Sanger sequencing 
of COI

Propylene glycol 
(Better World 

Manufacturing, 
Fresno, CA)

baited Lindgren 
funnel trap with 

25% PG

3–5 days 95% ethanol 
(freezer)

n.a. well preserved for morphological 
and molecular analyses

Rugman-
Jones et al. 
(2015)

2015 Coleoptera 
(Curculionidae)

Sanger sequencing 
of COI and 28S

Pink marine 
or recreational 

vehicle 
antifreeze (not 

for automobiles)

pheromone-
baited Lindgren 

funnel trap 
with PG

weekly or 
bi-weekly

100% ethanol n.a. well preserved for molecular 
analysis; part of specimens 

collected in PG-based antifreeze 
according to official monitoring 
guidelines (Seybold et al. 2013)

Sánchez 
García et 
al. (2015), 
Sánchez 
García (2015)

2015 Coleoptera 
(Curculionidae)

Sanger sequencing 
of COI and COII

Propylene glycol ethanol-baited 
funnal trap 

with PG

n.a. n.a. n.a. well preserved for morphological 
and molecular analyses

Smith and 
Cognato 
(2015)

2015 Coleoptera 
(Curculionidae)

Sanger sequencing 
of COI and 28S

Propylene glycol Lindgren funnel 
trap with PG

n.a. 100% ethanol n.a. well preserved for morphological 
and molecular analyses

Steininger et 
al. (2015)

2015 Coleoptera 
(Curculionidae)

Arginine kinase 
fragment analysis

99% extra pure 
PG (Fisher) and 

low-toxicity 
antifreeze 
(Lowtox, 

Prestone Inc.)

specimens 
directly placed 

in pure PG 
or PG-based 

antifreeze

2 or 7 days very high qPCR success rates, no 
matter which storage conditions 

were used

Borges et al. 
(2016)

2016 Coleoptera 
(Zopheridae)

Sanger sequencing 
of COI, COII, 

tRNA-Leu gene 
and EF1α

Propylene glycol pitfall trap with 
pure PG

n.a. 100% ethanol 
or acetone 

(refrigerator)

n.a. well preserved for morphological 
and molecular analyses

Eigenbrode et 
al. (2016)

2016 Hemiptera 
(Aphidae)

Microsatellite 
genotyping

Propylene glycol pan trap with 
PG

2-times a 
week for few 

months

95% ethanol n.a. well preserved for microsatellite 
analysis

Liu (2016) 2016 Diptera 
(Drosophilidae)

Microsatellite 
genotyping

100% food-
grade propylene 

glycol

baited bottle 
trap with PG

1–2 days 95% ethanol 
(-60 °C)

n.a. well preserved for morphological 
and microsatellite analyses

Patrick et al. 
(2016)

2016 Diptera 
(Calliphoridae, 

Fanniidae, 
Muscidae, 

Tephritidae)

High-quality 
genomic DNA for 
HTS approaches

99.5% propylene 
glycol (Sigma-

Aldrich)

specimens 
directly placed 

in pure PG

1, 8, 13, 14 or 15 days (4 °C or -20 °C) PG, 97–100% ethanol and AL 
buffer yielded high-quality 

genomic DNA, whereas RNA-free 
water, buffer AE and PBS failed. 

DNA concentration in ethanol 
was significantly higher at both 

temperatures
lure-baited 
modified 

Steiner trap 
with PG

daily over 
few weeks

living 
specimens 
refrigerated 
than stored 
in pure PG 
(chilled)

20 days, 
afterwards 
for max. 
1 month 
(-80 °C)

PG storage was chosen due to 
its higher overall practicability 

compared to ethanol and 
RNAlater; specimens were 

easily transported in airplane and 
provided high-genomic DNA for 

subsequent analyses
Postlethwaite 
(2016)

2016 Hymenoptera 
(Anthophila)

Sanger sequencing 
of COI

Propylene glycol pitfall trap with 
pure PG

days to few 
months

PG until 
pinning

n.a. effective shipping of samples; 
well preserved for morphological 

and molecular analyses
Robideau et 
al. (2016)

2016 Coleoptera 
(Scolytidae)

Real-time PCR 
of COI

Propylene glycol Lindgren funnel 
trap with PG

n.a. 95% ethanol n.a. well preserved for morphological 
and molecular analyses

Wiseman et 
al. (2016)

2016 Coleoptera 
(Carabidae)

Sanger sequencing 
of COI, ITS2, 18S 

and 28S

Propylene glycol pitfall trap with 
PG

n.a. pinned and 
dried

n.a. well preserved for molecular 
analysis

Boontop et 
al. (2017a), 
Boontop 
(2017)

2017 Diptera 
(Tephritidae)

Sanger sequencing 
of COI and 

microsatellite 
genotyping

Propylene glycol specimens 
directly placed 

in pure PG

until 
shipping 

(RT)

95% ethanol 
(-20 °C)

n.a. well preserved for morphological 
and molecular analyses

Boontop et 
al. (2017b), 
Boontop 
(2017)

2017 Diptera 
(Tephritidae)

Sanger sequencing 
of COI and 

microsatellite 
genotyping

Propylene glycol specimens 
directly placed 

in pure PG

until 
shipping 

(RT)

95% ethanol 
(-20 °C)

n.a. effective shipping of samples; 
well preserved for morphological 

and molecular analyses

Bowser et al. 
(2017)

2017 Arthropod sweep 
net bulk sample

COI 
metabarcoding

Propylene glycol 
antifreeze (Uni-

Gard -100)

specimens 
directly placed 

in pure PG

n.a. (-23 °C) 100% ethanol, 
rinsed with 

PBS prior to 
extraction

21 days effective shipping of samples; 
well preserved for morphological 

and genomic analyses

Cordero et al. 
(2017)

2017 aquatic insects Sanger sequencing 
of COI

Propylene glycol specimens 
directly placed 

in 80% PG

n.a. 95% ethanol n.a. specimens suitable for barcoding

Greenslade et 
al. (2017)

2017 Collembola 
(Dicyrtomidae)

Sanger sequencing 
of COI

Mono-propylene 
glycol 

(antifreeze)

baited pitfall 
trap with PG 

and soap

2 days Nesbitt 
solution

over night well preserved for morphological 
and molecular analyses

Hoekman et 
al. (2017)

2017 Coleoptera 
(Carabidae)

Sanger sequencing 
of COI

Propylene glycol pitfall trap with 
50% PG

each 2 weeks 
over entire 
growing 
season

95% ethanol, 
renewed after 

24 h

up to several 
months

specimens highly suitable for 
morphological and genetic 

identification
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Study Year Taxon DNA-based 
approach

PG specificities Fixation step Preservation step Central outcomes
Condition(s) Duration Condition(s) Duration

Langer et al. 
(2017)

2017 Diptera 
(Calliphoridae)

Sanger sequencing 
of COI

nontoxic 
recreational 

vehicle 
antifreeze

baited bottle 
trap with PG

n.a. 80% ethanol n.a. well preserved for morphological 
and molecular analyses

Lefort et al. 
(2017)

2017 Hemiptera 
(Aphidae)

COI 
metabarcoding

Propylene glycol specimens 
directly placed 

in pure PG

n.a. n.a. (-80 °C) n.a. effective transport of samples; 
DNA suitable for high-throughput 

sequencing applications
Perry et al. 
(2017)

2017 Lepidoptera 
(Plutellidae)

SNP assay (RAD-
Seq)

Propylene glycol 
(USP grade)

specimens 
directly placed 

in pure PG

n.a. (-20 °C) DNA suitable for population 
genomic SNP analysis

Ulyshen et al. 
(2017)

2017 Coleoptera 
(Lucanidae)

Sanger sequencing 
of COI

Propylene glycol baited flight 
intercept trap 

with PG

each 2 
weeks over 6 

months

n.a. n.a. specimens well preserved for 
barcoding

Daglish et al. 
(2018)

2018 Coleoptera 
(Bostrichidae)

PCR-based 
resistance marker 
screening (rph2)

Propylene glycol lure-baited 
Lindgren funnel 

trap with PG

n.a. n.a. n.a. genomic DNA suitable for mass 
screening of resistance marker

Grando et al. 
(2018)

2018 Hymenoptera 
(Anthophila)

Sanger sequencing 
of COI

Propylene glycol Vane trap with 
PG

n.a. 70% ethanol few months 
(10 °C)

well preserved for morphological 
and molecular analyses

Gregoire 
Taillefer and 
Wheeler 
(2018)

2018 Diptera Sanger sequencing 
of COI

Propylene glycol pan trap with 
50% PG and 

soap

7–8 days 95% ethanol 
or air-dried 

or ethyl 
acetate or 

hexamethyl-
disilazane

n.a. well preserved for morphological 
and molecular analyses

Ide et al. 
(2018)

2018 Hymenoptera 
(Formicidae)

LAMP (loop-
mediated 

isothermal 
amplification) 

assay

Propylene glycol baited pan trap 
with pure PG

3 h washed in 
99.5% ethanol, 
air-dried (RT)

n.a. well preserved for molecular 
analysis

Muturi et al. 
(2018)

2018 Diptera (Culicidae; 
gut content)

Sanger sequencing 
of COI and 16S 
metabarcoding

Propylene glycol suction trap 
with 50% PG

weekly 
from May to 

October

95% ethanol 
(-20 °C)

n.a. specimens well preserved for 
barcoding and microbial gut 

content analysis
Angelella et 
al. (2019)

2019 Hemiptera 
(Aphidae)

SNP assay Propylene glycol pitfall trap with 
25% PG

weekly for 
14 weeks

undiluted 
ethanol 
(-80 °C)

n.a. DNA suitable for population 
genomic SNP analysis

Bowser et al. 
(2019)

2019 Arthropod sweep 
net bulk sample

COI 
metabarcoding

Propylene glycol 
antifreeze (Uni-

Gard -100)

specimens 
directly placed 

in pure PG

n.a. (-23 °C) 100% ethanol, 
rinsed with 

PBS prior to 
extraction

1 week well preserved for genomic 
analysis

DiGirolomo 
et al. (2019)

2019 Coleoptera 
(Buprestidae)

Sanger sequencing 
of COI

Propylene glycol barrel with 
baited 

collection cups 
with PG

several 
months

n.a. n.a. specimens well preserved for 
morphological analysis, but 
barcoding was only partly 

successfull
Jusino et al. 
(2019)

2019 Arthropod pitfall 
trap bulk sample

COI 
metabarcoding

Propylene glycol pitfall trap with 
pure PG

2–3 days 100% ethanol 
(RT, -20 °C)

n.a. well preserved for morphological 
and genomic analyses

Krosch et al. 
(2019)

2019 Diptera 
(Tephritidae)

Sanger sequencing 
of COI and COII

Propylene glycol specimens 
directly placed 

in pure PG

n.a. (RT) effective shipping of samples; 
well preserved for morphological 

and molecular analyses
Landi et al. 
(2019)

2019 Coleoptera 
(Curculionidae)

Sanger sequencing 
of COI

Propylene glycol ethanol-baited 
Lindgren funnel 

trap with PG

n.a. (Nov-
Feb)

n.a. n.a. well preserved for morphological 
and molecular analyses

Lienhard 
and Schäffer 
(2019)

2019 Arachnida (Acari) PCR-based 
visualisation

Propylene glycol specimens 
directly placed 

in pure PG

several 
weeks

absolute 
ethanol

1 day results for DNA quality and 
quantity of PG-conserved 

specimens similar to ethanol-
conserved specimens

Nakahama 
et al. (2019)

2019 Orthoptera 
(Gryllidae)

PCR-based 
visualisation (COI)

Propylene glycol exposure to 
ethyl acetate 

vapour, 
followed by 

dehydration in 
99.5% ethanol

1 h and 24 h 99% PG 1, 6 and 12 
months

all replicates with PG-preserved 
(n = 12) were successfully 

amplified for all timepoints and 
three different fragment sizes

-30 °C and 
dehydration in 
99.5% ethanol

both 24 h

-30 °C 24 h
Ramírez et al. 
(2019)

2019 Arachnida 
(Aranea)

Sanger sequencing 
of COI, 12S, 16S, 
H3, 18S and 28S

Propylene 
glycol (Sierra 

antifreeze)

pitfall trap with 
PG

~30 days 95% ethanol 
for transport; 
100% ethanol 

storage

n.a. well preserved for morphological 
and molecular analyses, although 
heavy rainfall diluted PG in traps 
and has led to sediment wash-in

Taillefer and 
Wheeler 
(2019)

2019 Diptera (diverse 
Schizophora 

families)

Sanger sequencing 
of COI

Propylene glycol pitfall trap with 
50% PG, drop 
of detergent

6–8 days 95% ethanol n.a. well preserved for morphological 
and molecular analyses

Ballare et al. 
(2020)

2020 Hymenoptera 
(Anthophila)

ddRAD 
sequencing

Propylene glycol Vane trap 
with PG, 

amongst other 
treatments (e.g. 

pan trapping 
with soapy 

water; netted 
specimens 
placed in 
ethanol)

5 days 100% ethanol n.a. (until 
pinning)

all treatments produced a large 
number of high-quality loci 

(>4,000, ~20×). In comparison, 
the two PG-preserved species 

showed average DNA 
concentrations, but higher than 
average mean locus depths and 

lower than average mean numbers 
of polymorphic loci
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Krosch et al. 
(2020)

2020 Diptera 
(Tephritidae)

Sanger sequencing 
of COI

Propylene glycol specimens 
directly placed 

in pure PG

n.a. (RT) effective shipping of samples; 
suitable for DNA barcoding

Liu et al. 
(2020)

2020 Coleoptera 
(diverse)

COI and 16S 
metabarcoding

100% food-
grade propylene 

glycol

pitfall trap with 
pure PG

30 days 95% ethanol n.a. (-20 °C) well preserved for morphological 
and molecular analyses

Mitchell et al. 
(2020)

2020 Coleoptera 
(Scarabaeidae)

Sanger sequencing 
of COI

Propylene glycol flight intercept 
trap with 

PG:water mix

n.a. ethanol (after 
2–4 weeks)

n.a. well preserved for morphological 
and molecular analyses

Moricca et al. 
(2020)

2020 Coleoptera 
(Curculionidae)

Sanger sequencing 
of COI

Propylene glycol lured Lindgren 
funnel trap with 

30% PG

15 days 96% ethanol n.a. well preserved for morphological 
and molecular analyses, as well 
as for molecular screening of 

phytopathogenic fungi
Nakamura 
et al. (2020)

2020 Hymenoptera, 
Diptera, 

Coleoptera

PCR-based 
visualisation (COI)

Propylene glycol specimens 
directly placed 

in 98% PG

2 weeks to 205/215 days (RT) all, respectively, 96% of PG-
preserved specimens produced 
PCR bands after 2 weeks and 6 
months for two primer pairs and 

the DNeasy Blood and Tissue 
kit; performance was better than 

for 99.5% ethanol; PrepMan 
Ultra kit performance was less 

sophisticated
Robinson et 
al. (2020)

2020 benthic 
macroinvertebrate 

bulk sample

COI 
metabarcoding

Absolute Zëro 
RV Waterline 

Antifreeze 
(Recochem, 

Montreal, QC)

PG added to 
homogenized 

mock 
communities; 

or samples 
fixed in PG 

and than 
homogenized 

(ratio 1:3 
fixative to 
sample)

3 days (RT) evaporation step prior to DNA 
extraction was ommitted as 
PG does not inhibit PCR; 

communities are highly similar 
and even showed higher 

proportion of arthropod reads 
and higher richness than samples 
conserved with >99% lab grade 

ethanol

not to be underestimated amount of water and other com-
pounds (Nagy 2010; Goetze and Jungbluth 2013; Borges 
et al. 2016), but chemical interactions and their effects 
on medium- to long-term DNA integrity are largely un-
known. In addition to high temperatures, water dilution 
of PG in principle leads to a generally lower DNA integ-
rity (Stevens et al. 2011; Höfer et al. 2015; Patrick et al. 
2016; Nakamura et al. 2020), since water can lead to the 
hydrolysis of nucleic acids. Since most reviewed studies 
did not indicate the nature of the propylene glycol used, 
or field and storage temperatures, it was difficult to com-
pare study outcomes. Nevertheless, in several studies, PG 
was used in the range of 20–80% as a trapping agent and 
traps deployed for a duration of 1–2 weeks. Specimens 
collected and fixed under these conditions were still suffi-
ciently preserved for DNA analysis (Coulson et al. 2005; 
Sonoda et al. 2010; Hoekman et al. 2017; Angelella et al. 
2019). In one of the most extreme cases, samples were 
fixed for 1 month in pitfall traps containing PG-antifreeze. 
The traps further experienced heavy rainfall and sediment 
wash-in. Nevertheless, Ramírez et al. (2019) successful-
ly amplified six marker genes for the spider family under 
investigation and were able to morphologically investi-
gate the specimens at hand.

Propylene glycol is in accordance with the Dangerous 
Goods Regulations of The International Air Transport As-
sociation (IATA). This means that PG-fixed samples are 
suitable for direct shipping and do not have to be transferred 
to another chemical agent on the spot. This characteristic 
was especially important for studies in remote areas (e.g. 
Schutze et al. 2012; Haase and Zielske 2015; Patrick et al. 
2016; Bagnall 2016; Boontop et al. 2017a). In addition, it 
was seen as advantageous that PG can be relatively easily 
and cheaply obtained as an antifreeze in many parts of the 

world – a fact that does not always apply to absolute eth-
anol. As a major drawback, however, PG-based antifreez-
es might be regarded as special waste. As such, it can be 
prohibited to introduce them into local septic systems and 
the natural ground or to dispose them as domestic waste 
(Thomas 2008; Renaud 2012). Some national programmes 
might even prohibit the general use of antifreezes, as they 
can come along with additives such as lubricants, buffers, 
corrosion inhibitors and anti-foaming agents, whose im-
pacts on natural environments are often not totally under-
stood – or are considered carcinogenic (e.g. Tolytriazole, 
see Thomas 2008). Yet, much of the concern and regional 
bans relate to ethylene glycol-based antifreezes, which are 
toxic to humans and impose environmental risks. Readily 
available food-grade PG-based formulations such as from 
swimming pool or recreational vehicle antifreezes are gen-
erally regarded as safe (GRAS) material. They metabolize 
to lactic acid or substances of the Krebs cycle, which are 
natural metabolic products in the environment (Thomas 
2008; Skvarla et al. 2014). Nevertheless, the waste-disposal 
issue imposed by using antifreeze fixatives (as it is true for 
larger quantities of ethanol as well) should be understood 
beforehand and appropriate measures taken.

Another relevant aspect refers to a potential catch bias 
caused by the fixative. Although Schmidt et al. (2006) 
have not integrated PG in their test, they showed that 
capture efficiencies of commonly used fixatives in pitfall 
trapping of spiders and carabids can greatly vary. Adding 
to this, Weeks Jr & McIntyre (1997), Calixto et al. (2007) 
and McCravy and Willand (2007) demonstrated that PG 
might not only affect the size of the sample but also its 
taxonomic composition. Höfer et al. (2015) reported that 
pitfall traps deployed with PG captured significantly more 
spider species, but were not selectively attractive for par-
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ticular taxa. Nor was the pattern consistent across all sam-
pling sites. Reliable reference data for PG capture rates 
still seem to be too small to make valid statements, but the 
community should be aware that such a taxonomic bias 
could exist. Additionally, mammals can be attracted by the 
use of PG, disturbing pitfall traps and biasing sampling 
designs (e.g. Aristophanous 2010 and own observations).

Application of propylene glycol as a preservative

Propylene glycol was only occasionally used as a medi-
um-term preservative or storage medium. After PG fix-
ation, most samples were stored in ≥95% ethanol until 
DNA extraction or PG-fixed samples directly analysed 
within a few days when retrieved from the field. Never-
theless, Nakamura et al. (2020) highlighted the potential 
use of PG as a chemical agent that can be applied from 
trapping to storage and for various taxonomic groups, so 
that hands-on times can be shortened as well as labour 
and equipment costs reduced (i.e. no specimen picking, 
circumventing transfer into another solution and contain-
er). The authors compared the COI-amplification rates of 
dipterans, hymenopterans and coleopterans preserved in 
98% PG and 99.5% ethanol over a period of 2 weeks to >6 
months at room temperature, concluding that DNA might 
be more long-term stable in PG than in ethanol. On the 
contrary, Patrick et al. (2016) tested various storage agents 
(including 99.5% PG and 97–100% ethanol) applicable in 
remote areas on three dipteran species under different tem-
peratures. Although the experiment ended after 15 days, 
their results suggest that keeping PG fixed samples as cold 
as possible (e.g. packed in ice-filled boxes from hotel bars) 
is important to ensure short- to mid-term DNA integrity.

If we adopt the results to common practices of sample 
storage, it tells us that PG-preserved samples should pref-
erably be stored cool and dark just like ethanol-preserved 
samples. Yet, DNA quality and quantity of long-term 
stored, chilled PG-preserved samples should be investi-
gated in further detail.

Application of propylene glycol in HTS studies

Sufficiently high DNA quantities and DNA qualities 
are prerequisites in HTS studies. Lienhard and Schäffer 
(2019) evaluated DNA quality and quantity of ethanol- 
and PG-preserved oribatid mite species (<1 mm, pre-
served for several weeks), originating from seven DNA 
isolation methods suitable for high-throughput DNA 
sequencing. Although some study parameters had a sig-
nificant effect on DNA quantity and quality, results for 
specimens preserved in PG or absolute ethanol generally 
suggest a high comparability. Similarly, Carter (2003) in-
vestigated the molecular weight spectra of double-strand-
ed DNA (dsDNA) for specimens of the Rough Woodlouse 
Porcellio scaber preserved in PG, ethanol, ethyl acetate 
and 2-ethoxy ethanol for 12 months at room temperature. 
Ethanol- and cryo-preserved specimens provided the 
best quality and highest concentration of high molecular 
weight dsDNA for the investigated time period (with a 

remarkable drop after 24 months for ethanol). Yet, DNA 
quality (in terms of degradation) and DNA quantity (in 
terms of concentration) of specimens stored in PG were 
decreased, especially for longer fragments (>5 kbp).

However, specimens were stored at room temperature, 
which showed a strong degradation effect in Patrick et al. 
(2016) compared to samples which were kept cool.

Systematic studies analysing the impact of PG fixation 
and preservation in the context of HTS are widely lack-
ing. Still, first case studies indicate a high applicability 
of PG fixation for short read amplicon sequencing (me-
tabarcoding; Bowser et al. 2017, 2019; Lefort et al. 2017; 
Jusino et al. 2019; Liu et al. 2020; Robinson et al. 2020). 
In particular Robinson et al. (2020) tested the effect of 
PG antifreeze fixation of homogenised mock communi-
ties and benthic bulk samples. Their COI metabarcoding 
results indicate a generally high comparability of com-
munities from ethanol and PG fixed samples. The latter 
even produced a higher proportion of arthropod reads and 
a higher richness of exact sequence variants (ESVs) when 
compared to ethanol samples.

Besides studies on short read amplicon sequencing, the 
applicability of PG was shown for short read reduced rep-
resentation methods (RAD-sequencing; Perry et al. 2017; 
Angelella et al. 2019; Ballare et al. 2020). In particular, 
Ballare et al. (2020) conducted a comparative setting test-
ing the impact of different field sample methods for SNP 
detection in wild bees, including PG-filled Vane traps. 
While a suitable DNA concentration and high locus depth 
were found for PG-fixed specimens, the number of loci 
recovered was comparatively low. Still, the two targeted 
wild bee species on average possessed more than 10,000 
loci with a mean locus depth of >70. One potential cause 
for the lower than average mean number of polymorphic 
loci might be an incomplete PG evaporation, leading to 
an insufficient ethanol preservation prior to pinning. Al-
ternatively, PG-stored samples were kept at room tem-
perature, whereas other samples which showed higher 
numbers of polymorphic loci were stored at -20 °C.

To the best of our knowledge, no study used PG-fixed 
or -preserved specimens for invertebrate genome sequenc-
ing. Our assumption, however, would be that if samples 
are fixed and stored under optimal conditions, genome 
sequencing based on short read lengths should be possi-
ble. However, how ultra-long sequencing (e.g. Nanopore) 
will be affected by potential DNA degradation effects of 
PG remains unclear and should be explicitly addressed.

Integrative use cases of propylene glycol-conserved 
invertebrate samples

Besides the possibility to perform DNA-based analyses 
(e.g. microsatellite fingerprinting, DNA barcoding, me-
tabarcoding and RAD-seq) directly on the invertebrates 
trapped or stored in PG, the samples seem suitable for 
a variety of research designs. Firstly, it has to be high-
lighted that PG-conserved specimens demonstrate a 
reduced shrinkage effect and specimens often remain 
appropriately conserved for morphological examina-
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tions (Thomas 2008). More so, PG can be even added 
to ethanol-preserved specimens to retain flexibility and 
to reduce shrinkage effects without compromising DNA 
integrity and storage conditions (Boaze and Waller 1992; 
Carter 2003), e.g. for improving morphological determin-
ability and dissection conditions (Karanovic et al. 2012, 
2016; Martin 2016; Perina et al. 2018; Herrera Russert 
2019). This ‘relaxation’ property of PG was exploited by 
several studies examining DNA markers and morphology 
of the very same specimens (Villacorta et al. 2008; Kro-
sch et al. 2013; Boontop et al. 2017b; Gregoire Taillefer 
and Wheeler 2018; Grando et al. 2018). Furthermore, 
PG-conserved invertebrate samples were highly suitable 
for related integrative study designs, which are becom-
ing increasingly popular in modern biodiversity studies. 
As such, Hu et al. (2017) investigated insect-associated 
microbiota by 16S rRNA amplicon sequencing of ants, 
Tremblay et al. (2018, 2019) screened phytopathogenic 
fungal propagules captured in insect traps via metagenom-
ics, and Lynggaard et al. (2019) analysed bulk arthropod 
Malaise trap samples to detect vertebrates via 12S and 
16S DNA metabarcoding. Molecular gut content analyses 
of PG-fixed invertebrate samples were e.g. performed for 
mosquitos (Muturi et al. 2018), fruit flies (Diepenbrock 
et al. 2018), carrion-feeding flies (Bagnall 2016) and di-
verse predatory groups (Murtiningsih 2014; Mabin et al. 
2020). Endoparasites were investigated by e.g. Sokolova 
et al. (2010; microsporidians in booklice), Looney et al. 
(2012; horsehair worms in carabids and crickets), Barratt 
et al. (2012; braconid parasitoids in weevils) and Harts-
horn et al. (2016; nematodes in wood wasps). Nie et al. 
(2011) detected the Potato virus Y from PG-fixed aphids 
via reverse transcription PCR. Finally, an addition of PG 
to pheromone/food traps might extend the lifetime of kai-
romones (Faleiro et al. 2016). Propylene glycol fixation 
of samples thus seems to be promising for a variety of 
integrative study designs.

Conclusions
There is currently only limited scientific literature on 
the use of PG for DNA-based analyses of invertebrates 
available, and even less so in the context of HTS. How-
ever, the investigated studies indicate that PG can be a 
versatile and worthwhile alternative for sample fixation 
(and potentially preservation) of various organism groups 
and in a range of methodological setups. Yet, generally 
valid statements about fixatives and preservatives are dif-
ficult to make (Nagy 2010; Short et al. 2018), and can be 
biased by comparing agents with contrasting water condi-
tions affecting DNA integrity (see Nakamura et al. 2020), 
varying field vs. laboratory humidity conditions (due to 
the hygroscopic nature of PG) and storage temperatures 
or by confusing chemicals (e.g. Vaudo et al. 2018).

Future studies which plan the application of PG should 
critically scrutinize their trapping, specimen and storage 
conditions. For how many days are traps deployed? How 

will humidity, precipitation, UV exposure and tempera-
ture conditions in the sampling area affect the fixative? 
Do the targeted organisms allow for an easy tissue pen-
etration by the fixative (e.g. soft-bodied vs. sclerotinised 
specimens)? Can PG reduce hands-on times and yet over-
all costs (e.g. no sample transfer for shipping; no evap-
oration prior to DNA isolation) (see e.g. Robinson et al. 
2020)? In many cases, and in particular for new large-
scale DNA-based monitoring programmes, one should 
not simply go by tradition but perform environment- and 
target group-specific tests and cost calculations before de-
ciding upon the most suitable fixative.
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