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Abstract
Knowledge of ichthyoplankton dynamics is extremely important for conservation management as it can provide information about 
preferential spawning sites, reproductive period, migratory routes and recruitment success, which can be used to guide management 
and conservation efforts. However, identification of the eggs and larvae of Neotropical freshwater fish is a difficult task. DNA bar-
codes have emerged as an alternative and highly accurate approach for species identification, but DNA barcoding can be time-con-
suming and costly. To solve this problem, we aimed to develop a simple protocol based on DNA metabarcoding, to investigate 
whether it is possible to detect and quantify all species present in a pool of organisms. To do this, 230 larvae were cut in half, one half 
was sequenced by the Sanger technique and the other half was used to compose six arrays with a pool of larvae that were sequenced 
using a next-generation technique (NGS). The results of the Sanger sequencing allowed the identification of almost all larvae at 
species level, and the results from NGS showed high accuracy in species detection, ranging from 83% to 100%, with an average 
of 95% in all samples. No false positives were detected. The frequency of organisms in the two methods was positively correlated 
(Pearson), with low variation among species. In conclusion, this protocol represents a considerable advance in ichthyoplankton 
studies, allowing a rapid, cost-effective, quali-quantitative approach that improves the accuracy of identification.
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Introduction
Studies concerning ichthyoplankton can provide novel 
information about preferential spawning sites, reproduc-
tive period, migratory routes, and recruitment success 
(Baumgartner et al. 2004, Bialetzki et al. 2005, Reynal-
te-Tataje et al. 2012). These are extremely important, as 
they provide useful knowledge for conservation manage-
ment, such as the delimitation of protected areas (de Silva 
et al. 2015; Silva et al. 2017). However, morphological 
identification of eggs and larvae have several limitations, 
because, in the early stages, the morphological diagnos-

tic characters are not yet fully formed (Baumgartner et al. 
2004, Reynalte-Tataje et al. 2012). Such limitations restrict 
efforts to gather information about the life history strate-
gies of most species, including endangered species, thus 
hampering proposals for targeted management actions.

The use of DNA barcodes in ichthyoplankton im-
proved the quality of identifications, both for eggs and 
larvae, and emerged as an effective alternative for tradi-
tional identification methods (Becker et al. 2015, Fran-
tine-Silva et al. 2015). Nevertheless, despite its high ac-
curacy, when applied in extensive studies with thousands 
of eggs and larvae, DNA barcoding can be time-consum-
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ing and costly, because each organism has to be individu-
ally processed and sequenced (Evans et al. 2016, Elbrecht 
and Leese 2017, Mariac et al. 2018).

To solve this problem, DNA metabarcoding, based on 
next generation sequencing (NGS) could offer an alterna-
tive approach, allowing a reduction of labor time as well as 
costs. Although Neotropical ichthyofauna metabarcoding 
studies are scarce (Maggia et al. 2017, Mariac et al. 2018, 
Sales et al. 2019), this technique has been utilized in sever-
al ecological studies on ichthyoplankton and also to identi-
fy gut contents (Cruaud et al. 2017, Guillerault et al. 2017, 
Maggia et al. 2017, Divoll et al. 2018, Barbato et al. 2019).

Here we describe a novel DNA metabarcoding proto-
col for ichthyoplankton using NGS technology and test 
the accuracy of this protocol in identifying all species 
present in an array. We also test whether the proposed 
approach is valid for estimating the relative frequency of 
species present in a sample.

Material and methods

Field sampling

The larvae used in this experiment come from another 
study using DNA barcoding for species identification. Ich-
thyoplankton sampling was carried out in the Mogi-Guaçu 
river, an important tributary of the left bank of the Grande 
River, Upper Paraná River Basin. Samples were taken 
from two sites: 1: 21°35.441’S, 47°57.244’W (Dec/16 
and Jan/17) and site 2: 21°30.168’S, 48°2.534’W (Dec/15, 
Nov/16, Dec/16, and Jan/17) (Table 1), located in the 
northeast region of the state of São Paulo, Brazil. The sites 
are about 15 km apart from each other in a straight line.

Collecting took place with a conical-cylindrical net with 
a mesh size of 0.5 mm. Samples were immediately fixed 
in 96% ethanol. In the laboratory, eggs and larvae were 
separated from other materials present in the samples (e.g., 
leaves, sediment, and sticks) under a stereomicroscope and 
kept in 96% ethanol until the molecular procedure.

Sampling and experiment setup

In this study, we used 230 larvae distributed randomly 
across six arrays, with the number of organisms per array 
ranging from 36 to 44. However, each sample contained 
larvae of only one site and month (Table 1). Each lar-
va was cut into halves; one half was subject to gDNA 
extraction and subsequent Sanger sequencing, while the 
other half was pooled and homogenized with other lar-
vae from the same sample for combined DNA extraction 
and subsequent metabarcoding using next-generation se-
quencing (NGS) (Figure 1).

Sanger sequencing

DNA extraction for Sanger sequencing was made follow-
ing the protocol proposed by Ivanova et al. (2006). Cy-

tochrome C Oxidase Subunit I (COI) primers FishF1 and 
FishR1 (Ward et al. 2005) were selected because these 
have a good species recovery in the hydrographic basin 
where the study occurred. PCR conditions were: 1 min at 
96 °C followed by 35 cycles of 10 s at 96 °C, 5 s at 50 °C 
and 4 min at 60 °C. The PCR product was sequenced us-
ing a Big Dye 3.1 Terminator kit (Applied Biosystems) 
in an ABI Prism 3130 (Applied Biosystems), generating 
two complementary sequences of 654 bp.

DNA metabarcoding

DNeasy Blood and Tissue Kit (Qiagen) was used for 
DNA extraction from bulk samples following the man-
ufacturer’s protocol. Two PCR runs were performed: the 
first to amplify the COI region, using the same primer 
pair used for the Sanger sequencing coupled with Illumi-
na MiSeq adapter, and the second to attach a multiplex 
identifier (MID).

In the first PCR, each reaction contained, 2 μl of DNA 
template, 2.5 μl buffer, 1 μl MgCl2 (50mM), 1 μl dNTP (2 
mM), 0.5 μl forward adapter+FishF1 primer (5 mM), 0.5 
μL reverse adapter+FishR1 primer (5 mM), 0.4 μl Taq 

Table 1. Number of larvae in each sample and their respective 
sites and month of capture.

Sample number Number of larvae Site Month
S1 36 1 Jan/17
S2 42 1 Dec/16
S3 26 2 Dec/16
S4 38 2 Jan/17
S5 44 2 Nov/16
S6 44 2 Dec/15
Total 230

Figure 1. Experimental setup of this study for Sanger and me-
tabarcoding analysis of ichthyoplankton.
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Polymerase (5 U/µl) (Phoneutria), and 17.1 μl of molec-
ular biology grade water in a final volume of 25 μl. PCR 
conditions were 95 °C for 3 min, 35 cycles of 95 °C for 
30 s, 52 °C for 45 s, and 68 °C for 60 s; and a final ex-
tension at 68 °C for 10 min. We purified PCR products 
through NucleoSpin Gel and PCR Clean-up from Mache-
rey-Nagel. In the second PCR, the library construction 
was made, where amplicons were dual indexed with 
MID’s by Macrogen, using the Nextera XT Index Kit and 
following the instructions present in 16S Metagenomic 
Sequencing Preparation. Amplicons were sequenced on 
the Illumina MiSeq platform, generating paired-end reads 
of 301 nucleotides in length.

Data analyses

For sequences generated with the Sanger method we used 
the Geneious Pro v4.8.5 software (Kearse et al. 2012), 
where forward and reversed files were combined to as-
semble a consensus sequence. All these consensus se-
quences were then exported as fasta files to be matched 
against the same database comprising the Illumina reads.

Metabarcoding data were analyzed following a bioin-
formatic protocol described in the Suppl. material 1. As 
the overlapping is not possible due to the length of PCR 
product (654 bp), only the forward file was used (Cruaud 
et al. 2017). This file was selected by checking the se-
quencing quality with FASTQC (Andrews 2010) (Suppl. 
material 2). Next, a quality trimming with Trimmomatic 
(Bolger et al. 2014) was performed, and we filtered out 
reads with a minimum quality of Q20 in at least the first 
250 nt. We also cut the sequences up to the length of 250 
nucleotides since the quality of final region was low (Sup-
pl. material 2). For this trimming we used the Fastx-Trim-
mer software (http://hannonlab.cshl.edu/fastx_toolkit/).

After this step, we used the OBITools toolkit version 
1.01 22 (http://metabarcoding.org/obitools; Boyer et al. 
2016) for DNA metabarcoding analysis. We first used the 
“obiuniq” command to dereplicate the sequences, to re-
duce the size file and computation time. In this step, all of 
the identical DNA sequences were grouped into a single 
sequence, scoring their abundance for comparison with 
the Sanger data. Subsequently, we used the “obigrep” 
command to remove sequences with less than 50 reads.

We constructed a custom database by downloading se-
quences from Project – FUPR Fishes from Upper Parana 
River, Brazil, present in the BOLD System (Ratnasing-
ham and Hebert 2007), since this project was executed in 
the same river basin as the current study. Also, we down-
loaded sequences from RefSeq (https://www.ncbi.nlm.
nih.gov/refseq/), using keywords “fish”, “fishes”, and 
“COI”, and then filtered the results only for “bony fishes”. 
For the first step of identification we used the BLASTN 
software (Altschul et al. 1990) to indicate which sequenc-
es had the greatest similarity to those obtained via Sanger 
and metabarcoding.

As a final filtering step, all sequences generated in the 
present study (NGS + Sanger) were aligned with those 

sequences present in a custom database that had similarity 
greater than 95% with one of the sequencing methods, 
using the Muscle (Edgar 2004) aligner implemented in 
Geneious 4.8.5 (Kearse et al. 2012). Next, we calculated 
the genetic distances among and within the species, using 
the Kimura-2-Parameter (K2P) distance model (Kimura 
1980). To provide a graphic representation of the pat-
terning of divergence among species, a neighbor-joining 
(NJ) dendrogram of K2P distances was created using the 
MEGA v 7.0 software (Kumar et al. 2016) for each sam-
ple. Those sequences (NGS and Sanger) that presented 
divergence greater than 2% in the K2P analysis compared 
to the sequences downloaded from the BOLD System 
database were removed from the analysis of abundance 
(Pereira et al. 2013).

To validate the efficacy of metabarcoding, statistical 
analyses were conducted to evaluate whether this method 
has a quali-quantitative resolution. To achieve our qual-
itative aim, from the genetic distance (K2P) and neigh-
bor-joining (NJ) dendrogram, we estimated richness (S 
= number of species) per sample in each method. Then, 
the richness between methods was compared to estimate 
the rate of species detection by metabarcoding, using the 
Sanger data as a reference.

To achieve our quantitative analysis, as the exact num-
ber of larvae per sample was known, the relative frequen-
cy per species (or taxon) was estimated for the Sanger 
data. This frequency compared with the value of the rel-
ative frequency (number of reads assigned to a taxon or 
species in relation to the total) obtained metabarcoding. 
This comparison was made per sample individually (e.g., 
Sanger sample 1 × NGS 1 sample). After this, we applied 
a Pearson correlation to test if the frequencies of Sanger 
and NGS showed a significant positive correlation and a 
permutational analysis of variance (PERMANOVA) to 
evaluate significant differences between relative abun-
dances of Sanger and NGS data.

Results

DNA sequencing

Of the 230 larvae used in this experiment (Suppl. 
material deposited in: https://doi.org/10.6084/m9.
figshare.6726956) 226 were retained for the analysis 
with Sanger sequencing. Four larvae were removed, due 
to low quality in Sanger sequencing and genetic diver-
gence above 2% in the alignment with those downloaded 
sequences. Results from the Sanger sequencing showed a 
richness of 29 taxa, belonging to 12 families and three or-
ders, varying from six species in sample S2 to 13 species 
in sample S1 (Table 2). Only three taxa were assigned to 
family or subfamily level.

NGS yielded 2,511,656 reads in the eight samples 
(Suppl. material deposited in: https://doi.org/10.6084/m9.
figshare.6726956) and, after the bioinformatic analysis, 
633,224 reads were kept. In total, 28 taxa were identified 
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https://www.ncbi.nlm.nih.gov/refseq/
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Table 2. Species composition and relative abundance of analyzed samples. S= Sanger sequences; NGS= Next generation sequenc-
ing metabarcoding; * false negative.

Family Species S1 S2 S3 S4 S5 S6
S NGS S NGS S NGS S NGS S NGS S NGS

Characiformes
Anostomidae Leporellus vittatus 5.6 10.4

Leporinus friderici 13.9 23.2 2.8 1.5 9.3 11.6 2.3 1.2
Leporinus paranensis 2.3 3.7
Leporinus striatus 5.6 2.5
Megaleporinus obtusidens 7.3 * 3.8 3.3 9.3 0.8 2.3 0.1
Megaleporinus piavussu 2.8 0.3
Schizodon nasutus 2.4 2.1

Characidae Astyanax lacustris 11.1 0.1 5.6 0.3 4.7 *
Astyanax schubarti 2.8 * 5.6 *
Cheirodontinae 11.1 4.3 2.4 0.05 3.8 0.6 2.8 2.0 4.7 1.6
Cheirodontinae 1 3.8 6.2
Hyphessobrycon eques 5.6 2.0

Curimatidae Steindachnerina insculpta 2.8 0.6
Erythrinidae Hoplias malabaricus 2.3 2.2
Parodontidae Apareiodon affinis 2.4 0.1
Prochilodontidae Prochilodus lineatus 2.8 15.2 4.7 9.2
Gymnotiformes
Sternopigydae Eigenmannia trilineata 2.3 5.0
Siluriformes
Doradidae Rhinodoras dorbignyi 2.8 1.4
Heptapteridae Heptapteridae 5.6 2.2 2.3 1.9

Iheringichthys labrosus 2.3 4.7
Pimelodella meeki 5.6 2.4 8.3 2.1

Loricariidae Rhinelepis aspera 2.8 16.9
Pimelodidae Pimelodus maculatus 27.8 36.0 70.7 95.0 69.2 58.1 52.8 61.3 32.6 49.0 86.4 85.2

Pimelodus microstoma 2.8 6.3 11.5 21.1
Pinirampus pirinampu 3.8 3.9
Pseudoplatystoma corruscans 14.6 2.7 3.8 6.9 16.3 8.6 2.3 0.1
Pseudoplatystoma reticulatum 4.7 1.3
Sorubim lima 2.8 3.0 9.3 13.8

Pseudopimelodidae Pseudopimelodus mangurus 5.6 4.2 2.8 1.8

with metabarcoding NGS out of the 29 taxa identified by 
the Sanger sequencing. Only Astyanax schubarti was not 
identified by metabarcoding in any of the samples (Table 
2).

Species detection (qualitative approach)

No false positives were observed in this study (Table 2); 
all the taxa retrieved by metabarcoding were also found 
in Sanger sequencing data. However, in four out of the six 
samples, one taxon was not detected by NGS: S1 and S4 
– Astyanax schubarti, S2 – Megaleporinus obtusidens, S5 
– Astyanax lacustris. In the other two samples, all taxa de-
tected by Sanger sequencing were also detected by NGS 
(S3 and S6). The taxa detection rate was higher than 83% 
in all samples, with 100% of detection in four samples 
and higher than 90% in three others (mean, 95%).

Relative abundance (quantitative approach)

The correlation between Sanger and NGS methods 
showed few differences in all samples. We detected a 
considerable difference between the two methods in only 
some cases: Rhinelepis aspera, Cheirodontinae sp.1, and 

Astyanax lacustris, in sample 1 and Prochilodus linea-
tus and Astyanax lacustris in sample 4. Nevertheless, the 
samples showed non-significant differences between the 
relative abundances of the two methods in PERMANO-
VA analysis (Pseudo-F = 0.39293; P(perm) = 0.838), 
denoting that, despite some deviations in the values, the 
quantification of organisms with the NGS method can be 
considered reliable here (Table 3; Figure 2). Also, in the 
same way, all samples showed higher values of Pearson’s 
correlation in relative frequency between Sanger and 
NGS methods, varying from 0.776 (sample S1) to 0.998 
(sample S6) (Table 3; Figure 2).

Table 3. Species richness per sample and method of sequenc-
ing, detection rate, and Pearson correlation (r) between Sanger 
and NGS methods.

Sample Richness Detection rate 
NGS/Sanger

Pearson 
correlationSanger NGS

S1 13 12 92.3 0.776
S2 6 5 83.3 0.987
S3 7 7 100.0 0.976
S4 12 11 91.7 0.955
S5 11 10 90.9 0.914
S6 7 7 100.0 0.998
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Discussion

Species identification

Despite some failures in species detection, we can consid-
er that the use of NGS is functional for COI-based ichthyo-
plankton species detection, with an average detection rate 
higher than 95%, which is similar to previous findings that 
compared Sanger and NGS (Cruaud et al. 2017). Also, when 
compared to morphology-based methods of egg and larvae 
identification, detection rates were even more satisfactory, as 
more than 50% of the larvae caught in natural populations 
cannot be identified due to the absence of diagnostic charac-
ters (newly hatched larvae) or damage due to fixation process 
(Bialetzki et al. 2005; da Silva et al. 2015; Silva et al. 2017).

With our present approach, most individuals were 
identified to the species level, demonstrating that even us-

ing only the forward reads, the information was sufficient 
for species identification. Only three taxa were assigned 
to family or subfamily level only, probably because they 
are cryptic species, not described or with sequences not 
deposited in any database. This observation reinforces the 
idea that more sequences of fish species must be deposited 
in databases, especially in river basins with rich fish fauna 
as the Upper Paraná River. Another positive aspect is that, 
compared with DNA barcoding (Arroyave and Stiassny 
2014, Becker et al. 2015, Frantine-Silva et al. 2015), our 
method can trigger significant advances in the quality of 
ecological studies in fish, as observed in some recent stud-
ies with metabarcoding (Guillerault et al. 2017, Maggia 
et al. 2017, Mariac et al. 2018, Barbato et al. 2019) and, 
mainly, to ensure significant reduction in labor time and 
cost per specimen reaching 80% of reduction (Shokralla 
et al. 2015).

Figure 2. Graphic representation of species abundance proportion (%) between Sanger (x-axis, left side) and NGS (x-axis, right 
side) for analyzed samples. A: sample 1, B: sample 2, C: sample 3, D: sample 4, E: sample 5, F: sample 6.* = false negative.

A B

D

F

C

E
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Despite some differences in obtaining DNA samples, both 
environmental DNA (eDNA) and DNA metabarcoding from 
bulk samples are subject to false negatives and false positives 
(Ficetola Gentile et al. 2015, 2016; Divoll et al. 2018). How-
ever, in the present study, only false negatives were observed. 
False negatives can lead to losses in mitigating measures of 
threatened species, due to the non-detection of target spe-
cies, which might lead to underestimation of populations and 
non-implementation of mitigation measures, causing injury 
to these species (Ficetola Gentile et al. 2015, 2016; Divoll 
et al. 2018). False negatives are mainly those related to in-
hibition issues, primer bias, PCR or sequencing errors, and 
bioinformatics analysis (Ficetola Gentile et al. 2015, 2016; 
Divoll et al. 2018).

Relative abundance

Quali- and quantitative studies involving metabarcoding 
and eDNA have increased significantly in recent years 
(Hänfling et al. 2016; Valentini et al. 2016; Evans and 
Lamberti 2017; Yamamoto et al. 2017; Nakagawa et al. 
2018; Mariac et al. 2018). However, the reliable quantifi-
cation of organisms remains a problem (Evans et al. 2016; 
Kelly et al. 2017; Hansen et al. 2018; Mariac et al. 2018). 
eDNA studies have shown a positive correlation between 
species-specific DNA concentrations in biomass and abun-
dance in eDNA (Takahara et al. 2012; Maruyama et al. 
2014; Doi et al. 2015; Evans et al. 2016). In this way, by 
focusing on developing a low-cost yet efficient protocol, 
here we show that PCR-based methods can be used to de-
termine relative abundance in studies of eggs and larvae.

Conclusions

Our results clearly show that the NGS approach on bulk 
samples can detect ichthyoplankton diversity at the species 
level, and also gives good estimates of relative abundance of 
the larvae, thus allowing reliable environmental monitoring 
at reduced cost and labor (Hansen et al. 2018). These results 
are extremely important since a great part of ichthyoplank-
ton remains undefined with the current technology, impair-
ing management actions. By applying metabarcoding proto-
cols, the identification of all sampled organisms is possible, 
even those that occur in low density, such as endangered 
species. Considering ecological aspects, the use of metabar-
coding in ichthyoplankton studies to identify fish larvae and 
eggs can provide several advances, such as precise deter-
mination of spawning sites of migratory and/or threatened 
species, and early detection of invasive species, which can 
help and guide management actions (Almeida et al. 2018).
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