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Abstract
The use of molecular tools for the detection and identification of invertebrate species enables the development of more easily 
standardisable inventories of biological elements for water quality assessments, as it circumvents human-based bias and errors 
in species identifications. Current Ecological Quality Ratio (EQR) assessments methods, however, often rely on abundance data. 
Translating metabarcoding sequence data into biomass or specimen abundances has proven difficult, as PCR amplification bias 
due to primer mismatching often provides skewed proportions of read abundances. While some potential solutions have been 
proposed in previous research, we instead looked at the necessity of abundance data in EQR assessments. In this study, we used 
historical monitoring data from natural (lakes, rivers and streams) and artificial (ditches and canals) water bodies to assess the 
impact of species abundances on the EQR scores for macroinvertebrates in the Water Framework Directive (WFD) monitoring 
programme of The Netherlands. By removing all the abundance data from the taxon observations, we simulated presence/absence-
based monitoring, for which EQRs were calculated according to traditional methods. Our results showed a strong correlation 
between abundance-based and presence/absence-based EQRs. EQR scores were generally higher without abundances (75.8% of 
all samples), which resulted in 9.1% of samples being assigned to a higher quality class. The majority of the samples (89.7%) were 
assigned to the same quality class in both cases. These results are valuable for the incorporation of presence/absence metabarcoding 
data into water quality assessment methodology, potentially eliminating the need to translate metabarcoding data into biomass or 
absolute specimen counts for EQR assessments.
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Introduction
Quality monitoring of freshwater ecosystems is pre-
scribed under the European Union Water Framework Di-
rective of 2000 (EU WFD; Directive 2000/60/EC) and 
focuses on monitoring of biological quality elements 
(BQEs). In Europe, benthic invertebrates are one of the 
most prevalently monitored BQE (Birk et al. 2012). In-
vertebrate communities are made up of species that repre-
sent a broad range of trophic levels, ecological functions 

and tolerances to stressors (Kenney et al. 2009). Tradi-
tional monitoring of freshwater macroinvertebrates, how-
ever, is labour-intensive and heavily dependent on expert 
knowledge of the assessors, making it slow, expensive 
and prone to human-induced bias and errors at all stages 
of collecting, sorting and identifying (Clarke and Hering 
2006, Haase et al. 2010).

The incorporation of DNA barcodes (Hebert et al. 
2003) into the identification process seems to have allevi-
ated some of the human-induced issues. The use of these 
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barcodes for identification of species has become more 
and more accepted, especially given the decline in tradi-
tional taxonomists (Hopkins and Freckleton 2002) and the 
ability of DNA barcodes to provide identifications of non-
adult specimens and distinguish between cryptic clades 
(Sweeney et al. 2011, Jackson et al. 2014, Macher et al. 
2016). Recent developments in DNA metabarcoding show 
high potential to assess biodiversity across many biomes 
(Taberlet et al. 2012, Carew et al. 2013, Leray et al. 2013, 
Gibson et al. 2014, Stein et al. 2014, Pauls et al. 2014).

Now that the actual identification of species in bulk 
samples with high throughput sequencing (HTS) has 
shown its efficacy, the focus seems to shift towards solv-
ing some of the other issues concerning these novel strat-
egies, especially the relationship between input biomass 
or specimen counts and output HTS sequence abundanc-
es (Amend et al. 2010, Aylagas et al. 2018, Deagle et al. 
2013, Kelly et al. 2014, Elbrecht and Leese 2015, Piñol 
et al. 2015, Gibson et al. 2015, Hering et al. 2018).

The discussion, regarding the use of HTS read counts 
as an approximation of biomass or specimen abundanc-
es, is important for the biological components of the 
WFD as well. Abundance of (indicator) species or spe-
cies groups is used in many European assessment metrics 
(albeit regularly as abundance classes) and is often part 
of multi-metric approaches (Birk et al. 2012, Hering et 
al. 2018, Pawlowski et al. 2018). While information on 
species abundances and evenness are generally consid-
ered important ecosystem properties, the often relatively 
simple WFD scoring systems may abide with a presence/
absence-based methodology. Most traditional morpho-
logical monitoring relies on specimen count data, rath-
er than biomass abundances, so even in situations where 
read abundances can be translated into relative biomass, 
comparisons are difficult, considering also that most in-
vertebrate taxa differ in biomass depending on their life 
stage. If presence/absence data can be as useful for WFD 
scoring as abundance data, it would allow for easier and 
faster incorporation of molecular techniques, especially 
now that efforts have been made to infer biotic indices 
from DNA data (Aylagas et al. 2014, Elbrecht et al. 2017, 
Pawlowski et al. 2018).

In this study, therefore, we assessed the influence 
of species abundances on the Ecological Quality Ratio 
(EQR) scores for macroinvertebrates in the WFD moni-
toring programme of The Netherlands. The Dutch system 
uses abundance data (in the form of abundance classes) 
for macroinvertebrates, where each species is scored as 
either a positive indicator, a negative indicator, a charac-
teristic species or none of the aforementioned, depend-
ing on the type of water body (Evers et al. 2012, Van der 
Molen et al. 2016). A simple formula is used to calculate 
the ratio between normalised values for the indicators 
and expected reference values for the water type, which 
is expressed as a value between 0 and 1. Using historical 
records from traditional monitoring, we evaluated wheth-
er abundance data and presence/absence-based data pro-
duce comparable EQR scores.

Methods

EQR scores for macrofauna were calculated on histor-
ical monitoring data from four Dutch water authorities 
(Hoogheemraadschap van Rijnland, Waterschap Aa en 
Maas, Waterschap Brabantse Delta and Waterschap Riv-
ierenland), using morphological macroinvertebrate re-
cords from 2009 to 2017. These records are based on tra-
ditional macrofauna monitoring using kick-net sampling 
and morphological identification. The dataset included 
877 monitoring locations spanning 23 different water 
types according to the Dutch classification system. Most 
locations were monitored more than once (some even an-
nually), creating a total of 1780 macrofauna samples. An 
overview of the samples is provided in Table 1.

EQR macrofauna scores were calculated for all sam-
ples. The scoring system is based on the presence and/or 
abundance of positive indicator (DP), negative indicator 
(DN) and characteristic (KM) taxa. Most taxa are iden-
tified to species level in the Dutch macrofauna metrics, 
although for some “harder to identify” groups, species 
aggregates or higher-level taxonomic assignments are 
used (Evers et al. 2012, Van der Molen et al. 2016). In 
the most recent version of the Dutch WFD benchmarks, 
the absolute abundances of the dominant negative and the 
characteristics species used in the calculation are trans-
formed into abundance classes (Van der Hammen 1992). 
The EQR scores are calculated according to three dif-
ferent methods, based on the water type. Natural water 
bodies are divided into lentic and lotic. For lentic water 
bodies, such as lakes, the EQR is calculated according to 
the formula:

=  
200 ∗ (

%
) + (100 − %) + %

400
 

where KM% is the percentage of characteristic taxa, KM-
max is a constant value representing the expected frac-
tion of characteristic taxa depending on the specific water 
type, DN% is the percentage of negative indicator indi-
viduals and KMDP% is the percentage of characteristic 
and positive indicator individuals (Van der Molen et al. 
2016). Lotic water bodies, such as streams and rivers, are 
calculated slightly differently, with more emphasis on the 
negative indicators:

=  
200 ∗ (

%
) + 2 ∗ (100 − %) + %

500
 

For artificial water bodies, such as ditches and canals, 
the calculation is performed according to the following 
formula:

=  
2 ∗ ( ) + (1 −

%
)
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where PT is the absolute number of positive indicator 
taxa, PTmax is the absolute number expected positive 
indicator taxa, DN% is the percentage of negative indi-
cator individuals and DNmax is a constant value depend-
ing on the specific water type (Evers et al. 2012). The 
resulting score of all formulae is a value between 0 and 
1, which is subdivided into five quality classes: “bad” 
(EQR <0.2), “poor” (0.2–0.4), “moderate” (0.4–0.6), 
“good” (0.6–0.8) and “high” (0.8–1.0). These scores 
also reflect how observed conditions compare to refer-
ence status (and thus target status) for the assessed water 
type, where the highest status shows no difference and 
the lowest status shows substantial differences (Birk et 
al. 2012). For artificial water bodies, there are only four 
quality classes, with “good” representing scores between 
0.6 and 1.0, as artificial waters have no natural reference 
status for comparison.

For each of the 1780 samples, EQR scores were calcu-
lated using both original data with abundance classes and 
a manipulated dataset, converted to a presence/absence 
monitoring scheme by setting all specimen counts to 1. 
Any duplicate taxa in a given sample (e.g. where both 
adult and juvenile specimens were recorded separately) 
were removed to avoid aggregation into abundance class-
es other than 1 (abundance class 1 indicates a single speci-
men was found). QBWat software version 5.33 (Pot 2015) 
was used to compare and score the original and manipulat-
ed monitoring lists with predefined positive and negative 
indicator species lists, as well as the characteristic taxa 
list and the EQR based on the relevant formula for each 
water type was calculated. These predefined species lists 
(positive indicators, negative indicators and characteristic 
taxa) have been created specifically for EQR assessments 
and are based on species characteristics described in liter-
ature and expert judgements (Van der Molen et al. 2016). 
EQR scores with and without abundances were compared 
to determine the effect on the score, as well as the effect 
on the classification into the five quality classes. Dunn’s 
test was used to investigate the difference between water 
types and between quality classes.

Results
The investigated macrofauna samples had an average of 
72.1 ± 0.8 (mean ± SEM) species (minimum 1, maxi-

mum 217) recorded, with an average of 1221.5 ± 25.8 
specimens (minimum 1, maximum 11767). Mean EQRs, 
calculated with presence/absence-based data, were high-
ly correlated to original EQRs based on abundance class 
data, for natural lentic sites (Pearson correlation r = 0.993, 
p <0.001) (Figure 1A), natural lotic sites (Pearson cor-
relation r = 0.982, p <0.001) (Figure 1B) and artificial 
sites (Pearson correlation r = 0.983, p <0.001) (Figure 
1C). Neither of the EQRs, nor the difference between 
the two scores (ΔEQR) followed a normal distribution. 
Mean EQR without abundance data was 0.424 ± 0.003, 
which was significantly higher than the mean EQR cal-
culated with abundance classes (0.404 ± 0.003) (Wilcox-
on signed-rank test, p <0.001). The majority of EQRs 
were higher without abundances (1349 samples, 75.8%), 
359 samples scored lower (20.2%) and only 72 out of 
1780 samples (4.0%) scored exactly the same (based on 
scores with three decimal digits). The removal of abun-
dance classes had significantly less impact on the scoring 
for natural lentic systems (mean ΔEQR 0.006 ± 0.001) 
than it had on both natural lotic systems (0.021 ± 0.001) 
and artificial water bodies (0.024 ± 0.001) (Dunn’s test, 
p <0.001). There was no significant difference between 
the lotic and artificial systems (Figure 2A). Removal of 
abundance data had a stronger effect on samples from the 
lowest quality class (“bad”), where the mean ΔEQR was 
significantly higher than all other quality classes (Dunn’s 
test, p <0.001). Mean ΔEQR of the “poor” class, in turn, 
was significantly higher than those of “moderate” and 
“good” (Dunn’s test, p <0.001), while there was no signif-
icant difference in the impact on “moderate” and “good”. 
The “high” class was excluded from this analysis with 
only two of 1780 samples being assigned to that category 
(Figure 2B).

When assigning quality classes to the EQRs based on 
presence/absence data, 1596 (89.7%) of all samples were 
assigned to the same class, 22 (1.2%) were scored lower 
and 162 (9.1%) were scored higher. The change was most 
profound in the samples originally assigned to “bad”, 
where 51 out of 117 (43.6%) were assigned to “poor”, 
the class above. Results were comparable for the different 
water types: 95.2% of natural lentic samples, 89.9% of 
natural lotic samples and 87.4% of artificial samples were 
assigned to the same class. Samples assigned to a different 
quality class were assigned to a class either directly below 
or directly above its previous classification.

Table 1. Overview of samples. Distribution of samples used in this study, per water authority (includes survey time span), divided into 
the three categories defined by the EQR calculation: artificial ditches and canals, natural lentic (lakes) waters and natural lotic (rivers 
and streams) waters. No monitoring sites are present in rivers and streams for Hoogheemraadschap van Rijnland.

Natural waters Artificial waters
TotalLakes (type M12 – 

M32)
Rivers and streams  
(type R04 – R18)

Ditches and canals  
(type M01 – M10)

Hoogheemraadschap Rijnland (2009–2014) 198 n/a 173 371
Waterschap Aa en Maas (2011–2017) 9 221 150 380
Waterschap Brabantse Delta (2011–2016) 139 230 62 431
Waterschap Rivierenland (2011–2017) 8 56 534 598
Total 354 507 919 1780
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Figure 2. Factors influencing ΔEQR. Comparison of differences in EQR between assessment using abundance classes and using 
presence/absence data, (A) split by water type and EQR calculation method and (B) split per original assessment quality class 
(“high” was omitted, with only two samples in this data set). On average, classifications without abundance are higher than original 
assessments (ΔEQR positive). Removal of abundance resulted in significantly lower differences in natural lentic waters compared 
to natural lotic and artificial waters (Dunn’s test, p <0.001). There was no significant difference between lotic and artificial. Removal 
of abundance data has significantly more impact on EQR assessments for samples originally classified as “bad” compared to all 
other classes (Dunn’s test, p <0.001). ΔEQR was also significantly higher in “poor” samples compared to “moderate” and “good”.
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Figure 1. EQR (presence/absence) versus EQR (abundance classes). Comparison of macroinvertebrate EQR scores in standard 
assessment using abundance classes and EQR scores in simulated scenarios with presence/absence data for (A) natural lentic waters 
(lakes, n=354), (B) natural lotic waters (streams and rivers, n=507) and (C) artificial waters (ditches and canals, n=919). Coloured 
boxes indicate EQR quality classes: “bad” (red), “poor” (orange), “moderate” (yellow), “good” (green) and “high” (blue). For artifi-
cial water bodies, there are only four quality classes, with “good” representing scores between 0.6 and 1.0. For all comparisons, the 
EQR scores of abundance class data and presence/absence data was significantly correlated (Pearson correlation, p <0.001). Pearson 
correlation values are provided in the panels.

Discussion
Our results show there is a strong correlation between 
traditional EQR based on freshwater macrofauna using 
abundance data and EQRs calculated without abundance 
data in the Dutch system. For most samples, scores were 
comparable between the abundance- and presence/ab-
sence-based methods, with the majority (89.7%) being 

assigned to the same quality class in both cases. The dif-
ference seems to be largest in samples at the lower end of 
the EQR score spectrum, with almost half (43.6%) ending 
up in a higher quality class (“poor” instead of “bad”).

Based on the formulae used for the calculation of the 
EQRs, it can already be deduced that abundance is not a 
consideration for all components that determine the final 
score. For natural lakes, half the score is represented by 
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the fraction of characteristic taxa, which does not take in-
dividual specimen counts into account. The fraction of the 
score defined by factors that use abundance data is slight-
ly lower for natural streams and rivers (two fifths) and for 
artificial ditches and canals abundances are not used for 
two thirds of the final score. (Van der Molen et al. 2016). 
Interestingly, in our analysis, the impact of removal of 
abundances was significantly smaller in lakes than it was 
in rivers and streams and artificial water bodies (Figure 
2A). A larger impact on rivers and streams was expect-
ed, as 60% of the final EQR is based on the abundance 
of individuals scoring on each of the three indicator lists 
(positive, negative and characteristic). However, in the ar-
tificial systems, this only amounts to one third of the final 
score, so one would expect the impact to be smaller, espe-
cially considering that the quality classes most impacted 
by the removal of abundance (“bad” and “poor”, Figure 
2B) only account for 35.8% of the artificial water samples 
in the data presented in this paper, whereas those classes 
account for 49.4% and 81.1% of lakes and streams, re-
spectively.

The parts of the EQR score that do rely on abundance 
data in the Dutch system use abundance classes rather 
than actual specimen abundances. This may be a major 
factor in why the removal of abundances has only a lim-
ited impact on the EQR scores. Abundance classes were 
introduced into the Dutch metrics to reduce the effect 
of extremely high abundances of a single species on the 
EQR. The abundance class system uses a total of nine 
classes, where class “1” represents a single specimen 
and class “9” represents abundances over 1808 speci-
mens. When applied to the monitoring data, this means 
that an abundance of 20 specimens is translated to class 
“4”, whereas an abundance of 200 specimens is assigned 
to class “6”. Thus, whilst the actual abundance differ-
ence might be tenfold, in the calculation it would be only 
1.5-fold, already reducing the effect of absolute abun-
dances on the final EQR (van der Hammen 1992, Evers 
et al. 2012).

These observations are important when considering the 
incorporation of molecular techniques into WFD quality 
monitoring methodology. Given that techniques, such as 
metabarcoding, are proving their efficacy in the process 
of identification of species in bulk samples, incorporation 
of such techniques into the actual monitoring is only a 
matter of time (Zimmermann et al. 2015, Elbrecht et al. 
2016, Pawlowski et al. 2018). Efforts have been made 
in trying to link amplification bias in HTS with ampli-
fication success and PCR efficiency of quantitative PCR 
(qPCR) methods, showing there may be a relationship be-
tween low read numbers in HTS and high Cq values in 
qPCR, although PCR efficiency itself seemed unrelated 
(Pawluczyk et al. 2015). Even in case such an approach 
would yield usable information, it would not only require 
a priori knowledge of species present within a sample, 
but also seems cumbersome in complex monitoring sam-
ples, such as the ones used for this study (with an average 
of 72 species).

While our results imply that the technically difficult 
DNA-based quantifications might be avoided when cal-
culating EQR scores, being able to measure species-abun-
dance relationships from DNA data would nonetheless be 
desirable, since such relationships play an important role 
in understanding community composition and dynamics 
(Hubbell 2001). However, even for the relatively straight-
forward EQR scoring, the findings in this study cannot 
be translated into a conclusion that any bias can simply 
be ignored. These biases are an important consideration 
when generating taxon lists using HTS on bulk sample 
metabarcoding. Uneven distributions, paired with pref-
erential amplification of certain taxonomic groups, will 
result in incomplete recovery of taxa from a sample. It 
is therefore still important to take the necessary steps to 
avoid primer bias as much as possible.

One of the main advantages of DNA-based identifi-
cations over traditional taxonomy is the ability to relia-
bly identify larval stages and complicated taxonomical 
groups, for example in cryptic species, showing contrast-
ing reactions to stressors (Beermann et al. 2018, Macher 
et al. 2016). The use of metabarcoding to replace mor-
phological taxonomic assignment will bring changes to 
the species lists that can be used for EQR or other quality 
assessments because there will be more information on 
those groups that are currently underused due to identifi-
cation difficulties, as well as potentially higher resolutions 
of the identifications. Such changes alone may already 
prove challenging to use in traditional EQR assessments, 
as these systems have been set up with known limitations 
in mind. The Dutch macrofauna metric, for instance, 
makes little to no distinction between genera and species 
in the family Tubificidae, and many Chironomidae genera 
have the same scoring for each of its species (Van der Mo-
len et al. 2016). Any such changes alone would warrant a 
new system, rather than recalibration of the currently used 
methodologies that are partly built around the limitations 
of morphological identifications. However, until the lack 
of knowledge about species-level responses to stressors 
has been resolved, higher-resolution taxa lists can be 
merged into less resolved levels to allow for compatibility 
with current assessment systems.

Taking these considerations into account, together with 
the fact that expanding the DNA barcode repository for 
freshwater macroinvertebrates is one of the main focal 
points of the European DNAqua-Net collaboration (Leese 
et al. 2016), the generation of reliable species lists based 
on molecular data rather than morphological assessments 
is no longer a vision for the future. EQRs have always been 
used as a way to quickly assess the ecological status of wa-
ter bodies. Thorough knowledge of the potential caveats in 
molecular identification and/or detection techniques will 
allow for new EQR methods to be developed, methods 
better suited for use with molecular data. The transition 
towards DNA-based EQRs certainly has the potential to 
induce supranational standardisation within water quality 
assessment. Especially with international collaborations 
such as those in DNAqua-Net, which states that its goal 
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is to “develop a roadmap to include [DNA-based tools] in 
the standardized ecological assessment of aquatic ecosys-
tems in Europe and beyond” (Leese et al. 2016). Any such 
molecular-based EQRs might benefit from using more 
easily generated presence/absence taxon lists instead of an 
abundance-based analysis, allowing for faster and more 
and easily standardisable water quality assessments.

Conclusion

We demonstrated the viability of adopting presence/ab-
sence data instead of specimen abundance data in a WFD 
water quality assessment programme. Given all obstacles 
hampering the translation of HTS read data into biomass 
or absolute specimen counts, this paves the way for incor-
porating metabarcoding workflows into future assessment 
methodology. While species abundances are still valuable 
for a thorough ecological understanding of natural sys-
tems, the EQRs have been used more as a relatively quick 
assessment of ecological status of water bodies compared 
to reference situations. The EQR methodology used in 
this paper applies to the quality monitoring in The Neth-
erlands and results may vary for other nations, based on 
the methods of EQR calculation. We urge researchers to 
look into the actual influence of abundance data on their 
WFD programmes and in studies using metabarcoding 
data. With molecular techniques, such as metabarcoding 
of environmental DNA or bulk samples, proving to be 
successful, it is imperative that developments in routine 
EQR assessments, be they recalibrations or entirely new 
systems, strive to be more compatible with the potential 
lack of abundance data.
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