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Abstract
Dinoflagellates are traditionally identified morphologically using microscopy, which is a time-consuming and labour-intensive 
process. Hence, we explored DNA metabarcoding using high-throughput sequencing as a more efficient way to study planktonic 
dinoflagellate diversity in Singapore’s waters. From 29 minimally pre-sorted water samples collected at four locations in western 
Singapore, DNA was extracted, amplified and sequenced for a 313-bp fragment of the V4–V5 region in the 18S ribosomal RNA 
gene. Two sequencing runs generated 2,847,170 assembled paired-end reads, corresponding to 573,176 unique sequences. Sequenc-
es were clustered at 97% similarity and analysed with stringent thresholds (≥150 bp, ≥20 reads, ≥95% match to dinoflagellates), 
recovering 28 dinoflagellate taxa. Dinoflagellate diversity captured includes parasitic and symbiotic groups which are difficult to 
identify morphologically. Richness is similar between the inner and outer West Johor Strait, but variations in community structure 
are apparent, likely driven by environmental differences. None of the taxa detected in a recent phytoplankton bloom along the West 
Johor Strait have been recovered in our samples, suggesting that background communities are distinct from bloom communities. 
The voluminous data obtained in this study contribute baseline information for Singapore’s phytoplankton communities and prompt 
future research and monitoring to adopt the approach established here.
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Introduction
Dinoflagellates (Alveolata: Dinophyceae) are a diverse 
and abundant group of unicellular protists found in both 
marine and freshwater environments. With more than 
2,000 living species described (Gómez 2012), they are one 
of the most functionally important organisms in a variety 
of aquatic ecosystems (Spector 1984; Taylor et al. 2008). 
On top of being species rich, they have highly diversified 
morphologies, physiologies and biochemical properties 
(Hackett et al. 2004; Taylor et al. 2008). Dinoflagellates 
can be armoured or unarmoured (naked), based on the 
presence or absence of thecal plates respectively (Netzel 
and Dürr 1984). They play diverse ecological roles—as 
autotrophs, heterotrophs or mixotrophs—and can be endo-
symbionts of other organisms, notably the shallow-water 
reef-building corals, or host other endosymbionts them-

selves (Taylor et al. 2008). As part of the phytoplankton 
community, they are primary producers that form the base 
of food chains and are a large constituent of the aquatic 
system’s food web (Spector 1984; Taylor et al. 2008).

In the marine environment, there are more than 1,500 
species including both photosynthetic and non-photosyn-
thetic types (Taylor et al. 2008, Gómez 2012). Massive 
proliferation and accumulation of planktonic dinoflagellates 
can lead to water colouration and certain species are also 
known to cause damage to marine ecosystems as harmful 
algal blooms or ‘red tides’ (Berdalet et al. 2016). Fish kills 
and other animal mortalities are common especially when 
the bloom involves toxin-producing dinoflagellates such as 
Karenia brevis (Landsberg et al. 2009). Incidents of paralyt-
ic shellfish poisoning by dinoflagellates such as Alexandri-
um fundyense have serious health implications higher up the 
food chain especially where human consumption is involved 
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(Tan and Lee 1986; John et al. 2015). For example, in 2008, 
an intense bloom in the St Lawrence Estuary was found to 
be responsible for the death of many fish, bird and mammal 
species and extremely hazardous levels of paralytic shell-
fish toxins produced by the dinoflagellate were detected in 
edible mussels collected during the event (Starr et al. 2017).

The most common and earliest method of observing 
phytoplankton is through light microscopy, which is time 
consuming, labour intensive and demands a high level 
of taxonomic expertise (Sinigalliano et al. 2009; Medlin 
2013; McNamee et al. 2016). Some species, such as those 
in Alexandrium Halim, 1960, are relatively featureless 
and furthermore belong to species complexes, rendering 
them challenging to identify morphologically (John et al. 
2005; Anderson et al. 2012; John et al. 2014). In addition, 
naked dinoflagellates are also difficult to identify from 
preserved samples. Hence, more efficient approaches to 
study dinoflagellates have been developed, including the 
use of scanning electron microscopy (Jung et al. 2010), 
natural fluorescence (Karlson et al. 2010), flow cytom-
etry (Sinigalliano et al. 2009), high performance liquid 
chromatography (HPLC) (Gin et al. 2006) and molecular 
methods (Karlson et al. 2010).

Molecular techniques exploit the genetic distinction 
between species to identify and quantify species and have 
played an integral role in our understanding of the sys-
tematic positions and evolutionary relationships amongst 
organisms (Karlson et al. 2010). Examples of earlier mo-
lecular methods include cloning and sequencing (Zard-
oya et al. 1995), as well as heteroduplex mobility assay 
(Oldach et al. 2000). More recently, DNA barcoding has 
been successful in identifying dinoflagellates (Stern et al. 
2010). It uses the amplified sequence from a short, stan-
dardised DNA locus as diagnostic characters for species 
identification (Lin et al. 2009; Shokralla et al. 2012). 
Loci tested for dinoflagellates include the nuclear small 
ribosomal subunit (18S rRNA) (Lin et al. 2006), large ri-
bosomal subunit (28S rRNA; D1/D2 region) (Elferink et 
al. 2017), internal transcribed spacers (Stern et al. 2012) 
and the mitochondrial cytochrome c oxidase subunit I 
and cytochrome b (Lin et al. 2009). The mitochondrial 
genes cannot be easily amplified from all dinoflagellate 
taxa (Stern et al. 2012) and, amongst the nuclear loci, 18S 
rRNA remains the most well-sequenced marker in public 
databases due to their widespread use in dinoflagellate 
systematics (Mordret et al. 2018).

Improved technologies for performing high-through-
put sequencing have enabled multiplexed amplification 
products to be sequenced from numerous samples or from 
an environmental sample, in a method generally known 
as DNA metabarcoding, which is meeting the needs of 
many ecologists for rapid taxon identification (Metzker 
2010; Taberlet et al. 2012). DNA extracts can be amplified 
using primers tagged with a short barcode which labels 
the amplicons according to the sampling design and all 
amplicons can be pooled for sequencing and data traced 
back to individual samples (Schnell et al. 2015). DNA me-
tabarcoding enables thousands of samples to be sequenced 

simultaneously, rapidly and cost-effectively (Aylagas et al. 
2016). Important ecological applications of metabarcoding 
include diet and biodiversity analyses, with environmen-
tal samples of various ecosystems obtained mainly from 
faeces (Srivathsan et al. 2015; Guillerault et al. 2017), soil 
(Andersen et al. 2012; Treonis et al. 2018) or water sam-
ples (Thomsen et al. 2012; Yamamoto et al. 2017).

In the marine environment, metabarcoding has been 
useful for studying both benthic and planktonic eukary-
otic diversity (Fonseca et al. 2010, 2014; Logares et al. 
2014; de Vargas et al. 2015; Guardiola et al. 2015; Le 
Bescot et al. 2016; Tragin et al. 2018). Studies have tar-
geted the 18S rRNA and successfully characterised phy-
toplankton communities, which are more diverse than 
previously thought (de Vargas et al. 2015; Le Bescot et 
al. 2016). Small and symbiotic species have escaped tra-
ditional microscopic detection but can now be identified 
via metabarcoding (Le Bescot et al. 2016, Leblanc et al. 
2018). Here we use this technique to study phytoplankton 
communities in the coastal waters of Singapore.

The earliest studies of Singapore’s marine phytoplank-
ton communities were carried out in the mid-1900s, fo-
cusing on the Singapore Strait (Tham 1953, 1973; see 
Lee et al. 2015). It has long been hypothesised that the 
succession of phytoplankton species is likely caused by 
the biological history of water, stability and turbulence 
of the water column and monsoon-driven currents (Tham 
1973). There have also been new species discoveries 
(Holmes 1998) and new species records for Singapore 
(Leong et al. 2015). More recently, studies have begun 
to use more advanced techniques, which include the use 
of extracted chlorophyll measurements (Gin et al. 2000), 
flow cytometry (Gin et al. 2003), HPLC pigment analysis 
(Gin et al. 2003, 2006), spectral fluorometric characteri-
sation (Kuwahara and Leong 2015) and also molecular 
methods (Tang et al. 2007; Leong et al. 2015). The con-
sensus of these efforts is that, amongst all phytoplank-
ton groups, diatoms have the highest abundance except 
during dinoflagellate blooms (Gin et al. 2006; Leong et 
al. 2015). Particularly in the Johor Strait, there appears 
to be an inverse relationship between dinoflagellate and 
diatom counts (Chia et al. 1988).

There have been more than 20 positively identified spe-
cies of dinoflagellates reported from Singapore’s waters, 
but those which are known in detail have been studied 
mainly because they are associated with harmful algal 
blooms (Leong et al. 2015). These toxin-producing dino-
flagellate species are commonly associated with human 
illnesses such as paralytic shellfish poisoning and diar-
rhetic shellfish poisoning (Holmes and Teo 2002). Based 
on phylogenetic analysis and identification using the large 
subunit rDNA (28S rDNA), Tang et al. (2007) presented 
the first evidence of icthyotoxin production by Alexandri-
um leei and showed that A. leei strains in Singapore were 
more similar to isolates from Malaysia than to a strain from 
Korea. More recently, Leong et al. (2015) isolated clones 
of the 18S rDNA that were sequenced and compared to 
publicly available data from the GenBank nucleotide da-
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tabase. With this method and morphological confirmation, 
they detected three new dinoflagellate records for Singa-
pore—Karenia mikimotoi, Karlodinium cf. australe and 
Karlodinium cf. veneficum (Leong et al. 2015).

While more techniques are being explored, 
high-throughput sequencing has yet to enter the main-
stream of Singapore’s phytoplankton research, especially 
for the non-bloom baseline phytoplankton communities. 
Hence, the aim of this study is to take a metabarcoding 
approach to characterise the dinoflagellate communities 
at four sites along the western coast of Singapore (Fig. 
1). We seek to understand the efficacy of this approach 
to recover dinoflagellate taxa that are typically identified 
microscopically and even detect species new to this local-
ity. The data also allow a preliminary analysis of spatial 
and temporal variations in community composition along 
the West Johor Strait (WJS), to test the hypothesis that 
mixing between the inner and outer WJS homogenises 
communities along the Strait. Overall, this DNA metabar-
coding study advances our understanding of dinoflagel-
late diversity and distribution and provides a baseline 
against which monitoring of phytoplankton communities 
in Singapore can be performed.

Material and Methods
Study sites and sampling

A total of 29 plankton samples were collected between Sep-
tember and December 2015 at four sites in western Singapore 
(Fig. 1). Along the West Johor Strait (WJS), three replicate 
samples per month were collected from stations at inner and 
outer WJS (1.45883°, 103.7202° and 1.34037°, 103.63018°, 
respectively; 24 samples). Along the Singapore Strait, two 
samples were collected from St John’s Island (SJI) and three 
at a station off Jurong Island (JI) (1.22247°, 103.8487° and 
1.29527°, 103.68202°, respectively; 5 samples).

Collections were carried out using a 15-μm-mesh 
plankton net hauled vertically from 5 m depth to the wa-
ter surface. From each haul, the volume of water collected 
was standardised using a 50-ml measuring cylinder and 
temporarily transferred to a plastic bottle. Each sample 
was filtered through an 8-µm cellulose filter paper (What-
man, Sigma-Aldrich), which was immediately wrapped 
in sterilised aluminium foil, snap frozen in liquid nitrogen 
and stored at -30 °C prior to DNA extraction.

DNA extraction, amplification and sequencing

Each filter paper was cut into two and placed in separate 
1.5-ml tubes for DNA extraction using the standard CTAB 
(cetyltrimethylammonium bromide) and phenol-chloro-
form protocol (Doyle and Doyle 1987). DNA pellets were 
re-suspended in 100 μl of water, pooled between the two 
tubes and stored at -30°C until DNA amplification.

A 313-bp, V4-V5 region of the 18S rRNA locus was am-
plified using newly-designed forward primer, REL18S1F 
(5’– GTT GCG GTT AAA AAG CTC GTA GTT GGA–

3’) and reverse primer, REL18S1R (5’–AAC AAA TCC 
AAG AAT TTC ACC TCT GAC–3’), which is the reverse 
complement of the published Dino18SF3 designed specifi-
cally for dinoflagellates (Lin et al. 2006; see also Ki 2012). 
This primer combination was designed based on highly 
conserved priming sites that could amplify a variable frag-
ment, using a MAFFT version 7.222 (Katoh et al. 2002; 
Katoh and Toh 2008; Katoh and Standley 2013) alignment 
of known dinoflagellate species from Singapore (Leong et 
al. 2015). The fragment length chosen was aimed at maxi-
mising the overlap between the two paired-end reads from 
the Illumina MiSeq System. A unique 8-bp barcode gen-
erated using Barcode Generator 2.8 (Comai and Howell 
2009) was added to the 5’ end of each primer to pool sam-
ples for multiplexed sequencing (Suppl. material 1).

Three PCR replicates were carried out for each sample 
with a 25-μl reaction mixture containing 2.5 μl 10× re-
action buffer, 2.0 μl dNTPs, 1.0 μl of 10μM forward and 
reverse primers, 0.2 μl Bioready rTaq (Bulldog Bio), 2 μl 
DNA diluted 5× or 10× and 16.3 μl water. For each unique 
primer combination, a negative control (without DNA) 
was also prepared. In other words, every PCR for an ac-
tual sample was accompanied by a negative control using 
the same pair of barcoded primers. During the analyses, 
MOTUs appearing in the negative controls post-filtering 
would be removed from their corresponding samples. The 
PCR protocol comprised 1 min of initial denaturation at 
94 °C, followed by 35 cycles of 45 s at 94 °C, 45 s at 53 
°C and 1 min at 72 °C, ending with 3 min at 72 °C. Am-
plified products were quantified using the Qubit dsDNA 
BR Assay Kit on a Qubit 3 Fluorometer (Thermo Fisher 
Scientific) in order to pool approximately equal amount 
of PCR product for each tagged amplicon. Purification of 
the mixed products was performed using SureClean Plus 
(Bioline) following the manufacturer’s protocol.

The pooled PCR products, including all negative con-
trols, were split into two for Illumina DNA library prepa-
ration and paired-end sequencing with the Illumina MiSeq 
System. Approximately half of a sequencing run was target-
ed for each library—the first run generated read lengths of 
2× 250 bp (MiSeq Reagent Kit v2), while the second 2× 
300 bp (MiSeq Reagent Kit v3).

Bioinformatic pipeline

Assembly of paired-end reads was performed using 
Paired-End reAd mergeR (PEAR) version 0.9.6 (Zhang 
et al. 2014), with the criteria of 100-bp minimum overlap, 
minimum and maximum lengths at 150 and 330 bp re-
spectively and Phred quality threshold of 30. Amongst all 
the dinoflagellate sequences from GenBank that were an-
alysed here, few indels were found internal to the priming 
regions, with minimum and maximum lengths of 248 and 
263 bp respectively. Therefore, our filtering criterion with 
respect to read length would capture all dinoflagellates.

The assembled reads were analysed in OBITools 
version 1.2.0 (Boyer et al. 2016). A maximum of 2-bp 
mismatch for primer tags was used to assign sequence 
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records to corresponding samples with ngsfilter. obian-
notate followed by obisplit re-annotated sequence de-
scriptions and separated them into files based on their as-
signed samples. Within each sample file, strictly identical 
sequences were grouped together and assigned a count 
number with obiuniq. obiclean was used to detect am-
plification or sequencing errors, by classifying sequence 
records to either ‘head’, ‘internal’ or ‘singleton’, taking 
into account sequence similarities and record counts. 
The ‘head’ is the most common sequence amongst all 
sequences, while a ‘singleton’ sequence is one with no 
other variants in the amplification product (Guardiola 
et al. 2015); ‘internal’ is neither of the above and most 
likely corresponds to a sequencing or amplification error. 
Only ‘head’ sequences of at least 150 bp were retained 
for further analysis using obigrep and obisplit.

Sequences with at least 20 reads were clustered into 
molecular operational taxonomic units (MOTUs) with 
USEARCH version 8.1.1861 (Edgar 2010) at a similarity 
threshold of 97% and the greedy clustering algorithm. For 
each cluster, the sequence with the highest number of reads 
was taken as the ‘centroid’, where counts of the remaining 
sequences with at most 3% dissimilarity were added to it. 
Chimeric sequences were also removed in this process. For 
taxonomic assignment, the representative sequence for each 
MOTU was searched against the GenBank sequence data-
base using BLAST+ version 2.2.31 (Altschul et al. 1990). 
Only sequence matches with minimum identity of 95% to 
any dinoflagellate were retained for further analyses.

Data analyses

We compared dinoflagellate MOTU identities across the 
PCR triplicates and only retained those that met the above 
criteria in at least two replicates. MOTUs appearing in 
the negative controls were to be removed from their cor-
responding sample set if they met the same criteria. Re-
tained sequences were combined first according to their 
sample and then site, noting their respective number of 
reads for each MOTU. Sequences from all samples were 
combined to determine the total number of unique dino-
flagellate MOTUs amongst all samples.

Phylogenetic analyses were carried out to determine 
relationships amongst the MOTUs and previously se-
quenced taxa. Rhodophytes Rhodella violacea (Korn-
mann) Wehrmeyer (GenBank accession AF168624) 
and Bangia atropurpurea (Mertens ex Roth) C.Agardh 
(AF169339) were selected as outgroups. Taxa analysed in 
Leong et al. (2015) as well as published sequences from 
GenBank that matched ≥95% to MOTUs obtained here 
were also included to construct a data matrix with 100 
terminals. Sequences were aligned using MAFFT version 
7.222 (Katoh et al. 2002; Katoh and Toh 2008; Katoh 
and Standley 2013). A neighbour-joining (NJ) tree was 
inferred using PAUP* version 4.0b10 (Swofford 2003), 
with branch supports assessed using 1,000 bootstrap 
pseudoreplicates (Felsenstein 1985). We also performed 
model-based maximum likelihood (ML) and Bayesian 
analyses. ML tree searches via RAxML version 8.0.9 

Figure 1. Sampling stations where plankton was collected for this study between September and December 2015. Arrow represents 
predominant current direction, stronger during the northeast monsoon (November to March) and weaker during the southwest mon-
soon (June-September).

http://www.ncbi.nlm.nih.gov/nuccore/AF168624
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(Stamatakis 2006, 2014; Stamatakis et al. 2008) were car-
ried out with 50 replicates, default GTRGAMMA substi-
tution model and 1,000 bootstrap replicates. For Bayesian 
analysis, we selected the most suitable substitution mod-
el using jModelTest 2.1.10 (Guindon and Gascuel 2003; 
Posada 2008; Darriba et al. 2012) based on the Akaike in-
formation criterion (AIC). MrBayes 3.2.6 (Huelsenbeck 
and Ronquist 2001; Ronquist and Huelsenbeck 2003; 
Ronquist et al. 2012) was used to generate four runs of 
11 million Markov chain Monte Carlo iterations each, 
saving a tree every hundredth iteration. Convergence 
amongst runs was determined using Tracer 1.6 (Rambaut 
et al. 2014), which led to the removal of the first 50,001 
trees as burn-in.

Results

The two Illumina MiSeq sequencing runs produced 
2,847,170 assembled paired-end reads corresponding 
to 573,176 unique sequences. Further error pruning, se-
quence filtering and chimera removal further reduced the 
number of unique sequences to 268. After clustering the 
sequences using a 97% similarity threshold, 133 MOTUs 
were recovered. Filtering based on ≥95% sequence simi-
larity to GenBank dinoflagellate sequences resulted in 28 
unique MOTUs remaining (Table 1). Sequences have been 
deposited into GenBank (accession numbers MH234223–
MH234250). The mean number of reads per sample was 
46,386 (± S.E. 9,743) and the mean number of MOTUs per 
sample was 3.79 (± S.E. 0.45). At the site level, considering 
only stations with three samples collected, there were on 
average 4.56 (± SE 1.25) dinoflagellate MOTUs per sam-
pling station (Table 1). Our negative controls contained an 
average of 93 sequences per sample, but none of these met 
the set criteria (≥150 bp, ≥20 reads, ≥95% match).

The phylogenetic analyses revealed deep relationships 
that were generally inconsistent amongst NJ, ML and 
Bayesian reconstructions, but these were poorly support-
ed across all analyses. There were no topological con-
flicts that were supported by any of the analyses, so we 
discuss the well-supported nodes using the NJ tree (Fig. 
2). Branch supports increased closer to the tips, thus help-
ing to corroborate most of the BLAST matches. Of the 28 
MOTUs, 14 were matched 100% to a known sequence 
from GenBank and most of these were strongly supported 
on the tree (NJ, ML bootstrap ≥90, and Bayesian posteri-
or probability =1; e.g. OTU61 + uncultured dinoflagellate 
GU819712, and OTU31 + Gonyaulax spinifera).

OTU10, OTU37 and OTU61 showed no sequence 
similarity to any known species but exhibited high simi-
larity to a limited set of ‘uncultured dinoflagellates’ (Ta-
ble 1). They were phylogenetically distinct from the rest 
of the dinoflagellates (Fig. 2) and considered to be as-
sociated with Syndiniales, belonging to the deep-branch-
ing marine alveolates (MALV; López-García et al. 2001; 
Moon-van der Staay et al. 2001; Guillou et al. 2008). Oth-
er MOTUs that were not genetically similar to any known 

species and were not nested within a known clade include 
OTU12, OTU45, OTU58, OTU96, OTU97 and OTU102. 
High genetic diversity was observed amongst the MO-
TUs nested within Gyrodinium spirale and G. fusiforme 
(OTU1, OTU64, OTU110, OTU123 and OTU127).

Some MOTUs could be placed in a likely taxon, such as 
OTU20 in Gymnodinium and OTU129 in Prorocentrum, 
as they had high sequence similarity with and were nested 
within known taxa. There were also MOTUs exhibiting 
exact sequence matches to specific dinoflagellate species, 
an indication that such species were already known. These 
were represented by zero branch length difference be-
tween the MOTU and the known species, such as OTU23 
with Amphidinium klebsii, OTU73 with Alexandrium co-
horticula and OTU81 with Gyrodinium instriatum.

None of the samples recovered bloom-forming dinoflagel-
lates such as Karlodinium and Takayama, which were detect-
ed in abundance during a recent phytoplankton bloom along 
the WJS in February 2014 (Lim et al. 2014; Leong et al. 
2015). OTU98 was closely related to Symbiodinium sequenc-
es and was also observed during the bloom but could be part 
of the background community as ex hospite zooxanthellae.

The two most widespread MOTUs were OTU1 (iden-
tical sequence with G. fusiforme) and OTU20 (uncultured 
dinoflagellate). The former was present at both WJS sites 
and Jurong Island, while the latter was detected at both 
WJS sites and St John’s Island (Table 1). None of the 
MOTUs were found at all sites. OTU1 was detected at 
WJS during every sampling and registered consistently 
high read count across sites—as high as 10,000× the next 
most abundant taxon (i.e. September 2015 at inner WJS).

Nearly half of the MOTUs (13 of 28) were detected at 
inner and outer WJS each. There was an overlap of four 
MOTUs, including the abundant OTU1 (G. fusiforme), 
between the two WJS sites. Fewer MOTUs were found 
at Jurong Island (6 of 28) and St John’s Island (8 of 28). 
Two-thirds of the former’s MOTUs were unique to Ju-
rong Island, while most of St John’s Island’s MOTUs (6 
of 8) were found at WJS. Jurong Island and St John’s Is-
land were sampled only at one time point, so results ought 
to be viewed with caution. At WJS, the highest MOTU 
richness was observed during October 2015 (Fig. 3). Par-
ticularly for outer WJS, 12 of the 13 MOTUs were detect-
ed during that month, but apart from October, the site had 
very low MOTU richness.

Discussion

The two Illumina MiSeq sequencing runs generated a 
large number of reads that likely represent the majority 
of dinoflagellate individuals captured on the sample fil-
ters. Overall, the use of DNA metabarcoding on minimal-
ly sorted water samples has recovered a greater diversity 
of dinoflagellates in Singapore than a previous study that 
sequenced clone isolates amplified from water samples 
at comparable sites (Leong et al. 2015). As the diversity 
estimates here are based principally on sequence analy-

http://www.ncbi.nlm.nih.gov/nuccore/MH234223
http://www.ncbi.nlm.nih.gov/nuccore/MH234250
http://www.ncbi.nlm.nih.gov/nuccore/GU819712
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Figure 2. Neighbour-joining (NJ) tree showing 18S rRNA sequence relationships amongst dinoflagellates in Singapore (bold) and 
from GenBank. The 28 molecular operational taxonomic units detected in this study are denoted by prefix ‘OTU’. Dinoflagellate 
orders are represented by coloured branches. Bootstrap supports based on NJ and maximum likelihood (ML) methods (≥50), as well 
as Bayesian posterior probabilities (≥0.8) are shown as circles at the nodes.

sis, they need to be validated with other high-throughput 
methods such as flow cytometry and morphological ex-
amination using, for instance, scanning electron micros-
copy. Nevertheless, the spatial and temporal variations 
of community composition, shown here, form essential 
hypotheses for further tests of local and regional dinofla-
gellate distribution patterns.

After retaining sequences with ≥95% similarity to 
GenBank dinoflagellate sequences, only 28 dinoflagellate 
MOTUs have been detected. It is worth noting that the 
extent of how well represented 18S rRNA dinoflagellate 

sequences are in GenBank varies amongst genera. Se-
quences from the genus Alexandrium are most abundant 
on GenBank, with approximately 500 available. This is 
followed by Prorocentrum with 97 sequences retrieved; 
all other genera are represented by fewer sequences, with 
some having only one sequence available. Despite having 
the largest collection of published 18S rRNA sequences 
available, sequencing effort for dinoflagellates is highly 
skewed amongst genera. The majority of MOTUs, not as-
signed to dinoflagellates, indicate that the primers which 
have been designed for dinoflagellates also capture oth-



Metabarcoding and Metagenomics 2: e25136

https://mbmg.pensoft.net

7

Table 1. Molecular operational taxonomic units of dinoflagellates recovered from four sites along the western coast of Singapore, 
with information about their closest GenBank matches and sequencing read counts at each site and sampling month in 2015.

MOTU
GenBank 
accession 
number

GenBank closest match Identity
Inner West Johor Strait

Outer West Johor 
Strait

Jurong 
Island

St John’s 
Island

Sep Oct Nov Dec Sep Oct Nov Dec

OTU1 MH234223
AB120002 Gyrodinium fusiforme  

(Takano and Horiguchi 2004)
100.0 367351 167408 357281 226843 147 4302 688 185 96020

OTU10 MH234224
GU819712 Uncultured dinoflagellate 

(Edgcomb et al. 2011)
100.0 1036 476 6114 320 1268

OTU11 MH234225
AB827556 Uncultured dinoflagellate  

(Kok et al. 2014)
97.7 526 1315

OTU12 MH234226
KC488405 Uncultured dinoflagellate  

(Dasilva et al. 2014)
98.5 141 4347 99

OTU16 MH234227
AJ968729 Paulsenella vonstoschii  

(Kühn and Medlin 2005)
100.0 4435

OTU20 MH234228 FJ914425 Uncultured dinoflagellate 100.0 395 4362 139 502
OTU23 MH234229 EU046335 Amphidinium klebsii 100.0 691 1968
OTU31 MH234230 FR865625 Gonyaulax spinifera 100.0 1415

OTU37 MH234231
GU819660 Uncultured dinoflagellate 

(Edgcomb et al. 2011)
100.0 813

OTU38 MH234232
AB181899 Protoperidinium pallidum 

(Yamaguchi and Horiguchi 2005)
95.4 561

OTU45 MH234233
EU780628 Uncultured eukaryote  

(Guillou et al. 2008)
99.6 257 113

OTU48 MH234234 FJ914426 Uncultured dinoflagellate 98.5 619
OTU51 MH234235 FJ467492 Warnowia sp. (Gómez et al. 2009) 100.0 32

OTU58 MH234236
AB694525 Uncultured dinoflagellate  

(Kok et al. 2012)
99.2 147 77

OTU61 MH234237
GU820302 Uncultured dinoflagellate 

(Edgcomb et al. 2011)
100.0 162 23

OTU64 MH234238
AB120002 Gyrodinium fusiforme  

(Takano and Horiguchi 2004)
95.9 503

OTU72 MH234239 AJ276699 Ceratium furca 99.6 145 48

OTU73 MH234240
AF113935 Alexandrium cohorticula  

(Usup et al. 2002)
100.0 130

OTU81 MH234241 AY721981 Gyrodinium instriatum 100.0 36

OTU96 MH234242
FN598427 Uncultured dinoflagellate 

(Sauvadet et al. 2010)
100.0 21

OTU97 MH234243
GU819784 Uncultured dinoflagellate

(Edgcomb et al. 2011)
99.6 21 21

OTU98 MH234244
FJ823465 Uncultured Symbiodinium 

(Annenkova et al. 2011)
100.0 41

OTU102 MH234245
AB827518 Uncultured dinoflagellate  

(Kok et al. 2014)
97.7 22

OTU107 MH234246 FJ467492 Warnowia sp. (Gómez et al. 2009) 98.1 466

OTU110 MH234247
AB120002 Gyrodinium fusiforme  

(Takano and Horiguchi 2004)
98.8 21

OTU123 MH234248
AB120002 Gyrodinium fusiforme  

(Takano and Horiguchi 2004)
96.5 380

OTU127 MH234249
AB120002 Gyrodinium fusiforme  

(Takano and Horiguchi 2004)
98.0 34 62

OTU129 MH234250

EF492510 Prorocentrum mexicanum 
(Leblond et al. 2010)

EF492511 Prorocentrum micans  
(Leblond et al. 2010)

JQ616822 Prorocentrum rhathymum  
(Herrera-Sepúlveda et al. 2013)

AJ415520 Prorocentrum minimum
JQ390504 Prorocentrum texanum  

 (Henrichs et al. 2013)

100.0 147
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er organisms. Our database searches have indeed recov-
ered several diatoms amongst other eukaryotes. The 18S 
region amplified falls within the V4–V5 region that is 
commonly used to broadly amplify eukaryotic 18S rDNA 
using universal primers (Hadziavdic et al. 2014). Despite 
using primer sequences that appear to be specific to di-
noflagellates, the PCRs have also allowed non-specific 
binding. Future studies could consider adjacent priming 
sites to reduce non-target amplification.

As with the previous study in Singapore by Leong et 
al. (2015), our high-throughput sequencing recovers par-
asitic and symbiotic dinoflagellates which are challeng-
ing to detect using conventional microscopic sorting. The 
three MOTUs nested in the Syndiniales or MALV cluster 
(OTU10, OTU37 and OTU61) are clear outgroups of the 
‘core’ dinoflagellate clade (Guillou et al. 2008; Taylor 
et al. 2008). While this and previous studies (e.g. Guil-
lou et al. 2008; Leong et al. 2015) find Syndiniales to be 
monophyletic, as a whole, it may be paraphyletic (Stras-
sert et al. 2018). Syndiniales are obligate parasites found 
throughout marine habitats from the water surface to sed-
iments (Guillou et al. 2008) and are often highly repre-
sented in environmental samples (Kok et al. 2012). They 
have extremely diverse host ranges, associating with not 
only alveolates, but also copepods, cnidarians and even 
fish eggs (Chambouvet et al. 2008). Even if they are in 
low abundance, the community could quickly increase 
in population size and affect the abundance of its host, 
consequently impacting ecosystem functioning (Logares 
et al. 2015). It has only been recorded recently in Singa-
pore’s waters during the 2014 bloom (Leong et al. 2015). 
Our results show that read counts of sequences closely 
related to Syndiniales are relatively high (Table 1)—an 
indication that these marine parasites are prevalent in our 
waters even in non-bloom conditions.

A symbiotic dinoflagellate of the genus Symbiodinium 
(OTU98) has been detected at inner WJS in December 
2015. That this taxon is not more widespread and even 
absent in samples from the reef environment of St John’s 
Island is surprising because of its ubiquity and importance 
as endosymbionts of scleractinian corals (zooxanthellae; 
Tanzil et al. 2016), other marine invertebrates and protists 
(Takabayashi et al. 2012). They can exist as free-living 
cells that are detectable outside the hosts, sometimes in 
high densities and serve as symbiont sources to be taken 
up by juvenile corals or for uptake by adult corals faced 
with environmental stress (Littman et al. 2008; Takaba-
yashi et al. 2012). While it is not impossible to identify 
them using microscopy alone, they are morphologically 
similar to other dinoflagellates and have often been mis-
classified (Littman et al. 2008). Therefore, DNA-based 
methods are useful for distinguishing Symbiodinium from 
other dinoflagellates. Knowing that they can be captured 
in our study, future research or monitoring programmes 
can utilise DNA metabarcoding to help track the pool of 
potential coral endosymbionts in Singapore waters.

By far, the most read-abundant MOTU is OTU1, which 
has a sequence identical to Gyrodinium fusiforme. While 

taxon assignments based on the 18S rRNA gene may not 
be precise, this species is known to be widespread and has 
been recorded in Indonesia and the Malacca Strait (Dodge 
1982; Noor et al. 2007). Present at the inner and outer WJS 
every month of sampling from September to December 
2015, it is one of only four shared MOTUs at the two sites. 
Interesting, G. fusiforme was not detected during the 2014 
Karlodinium australe bloom on the Singapore side of the 
channel (Leong et al. 2015). Furthermore, Gyrodinium 
was only one of several dinoflagellate taxa constituting a 
minute proportion (<0.2%) of cell densities observed on 
the Malaysian side (Lim et al. 2014). With the exception 
of the MALV and Symbiodinium, there appears to be mu-
tual exclusivity between bloom and background dinofla-
gellate communities (Fig. 2). In particular, Takayama and 
Karlodinium, genera linked to mass fish mortality during 
the bloom (Leong et al. 2015), were not detected from our 
samples. These is possibility that they have been excluded 
from the inner WJS due to limited exchange with the Sin-
gapore Strait which connects to other regions. However, 
as they were also absent from the outer WJS, Jurong Is-
land and St John’s Island, it is more likely that they were 
encysted and benthic during our sampling, although cysts 
have yet to be observed for these species (Bergholtz et al. 
2005; Wang et al. 2011). Sequencing of benthic sediments 
from the WJS may help detect and identify cysts that can 
be matched to the vegetative forms in the water column 
(Godhe et al. 2002; Nagai et al. 2012; Gao et al. 2017).

Contrary to the hypothesis that mixing between the in-
ner and outer WJS homogenises the communities along 
the Strait, considerable differences have been found be-
tween the two sampling stations (Fig. 3; Table 1). The 
West Johor Strait is a shallow channel bounded by the 
Causeway and Pulai River (Kazemi et al. 2014). Species 
compositional differences between the inner and outer 
WJS suggest that there are site-specific variations related 
to coastal hydrodynamics and physico-chemical proper-
ties. Surrounding water bodies and monsoonal patterns 
determine much of the local hydrodynamics and water 
parameters such as salinity, temperature and turbidi-
ty (Behera et al. 2013). The circulation of Singapore’s 
waters is largely driven by two dominant monsoon sea-
sons—the northeast (November to March) and southwest 
(June–September) monsoons separated by two brief in-
ter-monsoon periods (Behera et al. 2013). Our sampling 
period coincides only briefly with the two monsoons and 
the four-month sampling period is insufficient for mak-
ing meaningful temporal comparisons. Nevertheless, the 
temporal variations appear to be related to flushing po-
tential. Tidal mixing would reduce stratification and the 
hydrodynamic response to variation in freshwater inflows 
is dependent on the flushing time of the channel (Kazemi 
et al. 2014). The inner WJS is known to have low flushing 
potential with a high residence time of >70 days (Bay-
en et al. 2013) and is also affected by consistently high 
levels of run-off from the Johor rivers resulting in more 
eutrophic conditions (Sin et al. 2016). These factors could 
drive the slightly more uniform community structure and 
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diversity over time at the inner WJS compared to the out-
er WJS which, being closer to the opening of the channel, 
would have greater tidal mixing and flushing potential.

The primary goal of all high-throughput sequencing of 
amplified markers is to recover accurate MOTU sequenc-
es and richness estimates from the voluminous sequence 
data (Nguyen et al. 2015). The number of MOTUs is de-
pendent on the similarity threshold applied to sequence 
reads for delimiting taxonomic units. Sequences that are 
more similar than a given threshold will be grouped into 
the same MOTU (Blaxter 2004). The ideal similarity val-
ue used for clustering should be one that most closely ap-
proximates the diversity of a sample at the species level 
(Guardiola et al. 2015). At a lower similarity threshold, 
fewer MOTUs could be recovered, but these then become 
divided into separate MOTUs when a higher similarity 
level is used (Logares et al. 2015). The differences in 
the absolute number of MOTUs could be as much as six 
times with clustering thresholds set at 3% and 1% dis-
similarities (Logares et al. 2015) and these can vary for 
different genetic loci (Ki 2012). Here we have attempted 
clustering at various dissimilarity thresholds (1–10%) to 
determine the sequence variabilities that show no change 
in the number of clusters obtained. The suitable cut-off 
distance ranged from 2% to 5% amongst our samples, so 
we used 3% as a conservative threshold so as not to over-
estimate diversity at each site.

The 18S rRNA is a commonly-used and well-charac-
terised genetic marker with a highly conserved function 

across all living cells. It comprises nine hypervariable re-
gions (V1–V9) (Ki 2012; Hadziavdic et al. 2014), with V2, 
V4 and V9 being at sufficient interspecific variabilities for 
biodiversity assessments (Hadziavdic et al. 2014). Never-
theless, all eight regions of eukaryotes (lacking V6) have 
been targeted for sequencing (Ki 2012). Here, in order to 
place our MOTUs in the same phylogenetic context with 
known dinoflagellates from Singapore, we designed prim-
ers to target the hypervariable V4–V5 region, which is also 
internal to the ~600-bp marker used by Leong et al. (2015) 
and has a length of 313 bp for paired-end sequencing by 
the Illumina MiSeq System (Hadziavdic et al. 2014; Le 
Bescot et al. 2016; Searle et al. 2016). It is important to 
note that different 18S regions can lead to varying diversity 
estimates (Edgcomb and Stoeck 2012), so our results need 
to be verified in future by analysing other variable regions.

Downstream of the amplification and sequencing steps, 
we have attempted to account for possible errors associat-
ed with high-throughput sequencing and DNA metabar-
coding. These measures include the omission of sequenc-
es <150 bp represented by fewer than 20 reads or those 
not matching at least 95% to published dinoflagellate se-
quences. Consequently, despite high read recovery, there 
was low read usability, with only 268 unique sequences 
that were eventually used for analysis. We also retained 
unique sequences only if they were detected in two of 
three PCR replicates and would potentially remove signals 
appearing in the negative controls. While high-throughput 
sequencing studies such as this are efficient in producing 

Figure 3. Number of dinoflagellate molecular operational taxonomic units (MOTUs) recovered at each of four sites, inner West 
Johor Strait (Inner WJS, red), outer West Johor Strait (Outer WJS, orange), Jurong Island (JI, green) and St John’s Island (SJI, blue), 
as well as the month of sampling in 2015.
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large amounts of sequence data, it is important to note that 
there are known issues concerning Illumina-based DNA 
metabarcoding, including primer tag jumps, contamina-
tion and false positive detections (Esling et al. 2015). We 
have sought to minimise these effects through the detailed 
experimental design and by implementing the rigorous 
criteria in our bioinformatic pipeline.

Conclusion

Despite the stringent thresholds, we have recovered a 
higher diversity of planktonic dinoflagellates—28 MO-
TUs—than previously reported for Singapore waters 
(Leong et al. 2015). This was achieved within a short 
four-month sampling period with minimal pre-sorting 
and without isolation of specific organisms. The 15-μm 
plankton net used for capturing microplankton would 
have omitted even smaller dinoflagellates since studies 
have suggested that many open water environments are 
dominated by small cells in the pico- (0.8–5μm) and nano-
plankton (5–20 μm) ranges (Gin et al. 2000; de Vargas 
et al. 2015). Therefore, our estimates are conservatively 
low. Further studies targeting greater ranges of organism 
size, depth and habitat are likely to detect more taxa, both 
known and unknown. The large and yet expanding DNA 
sequence database—to which the MOTUs obtained here 
contribute—will enable more precise matches for DNA 
metabarcodes locally and in the region.
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