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Primer Validation

Abstract

Environmental DNA (eDNA) metabarcoding has become a powerful tool for examining 
fish communities. Prior to the introduction of eDNA-based assessments into regulatory 
monitoring contexts (e.g., EU Water Framework Directive), there is a demand for meth-
odological standardization. To ensure methodical accuracy and to meet regulatory stan-
dards, various sampling, laboratory and bioinformatic workflows have been established. 
However, a crucial prerequisite for comprehensive fish monitoring is the choice of suit-
able primer pairs to accurately identify the fishes present in a given water body. Various 
fish-specific primer pairs targeting different genetic marker regions were published over 
the past decade. However, a dedicated study to evaluate the performance of frequently 
applied fish primer pairs to assess Central European fish species has not yet been con-
ducted. Therefore, we created an artificial 'mock' community composed of DNA from 
45 Central European fish species and examined the detection ability and reproducibility 
of five primer pairs. Our study highlights the effect of primer choice and bioinformat-
ic filtering on the outcome of eDNA metabarcoding results. From the five primer pairs 
evaluated in our study the tele02 (12S gene) primer pair was the best choice for eDNA 
metabarcoding of Central European freshwater fish. Also, the MiFish-U (12S) and SeaD-
NA-mid (COI) primer pairs displayed good detection ability and reproducibility. However, 
less specific primer pairs (i.e., targeting vertebrates) were found to be less reliable and 
generated high numbers of false-positive and false-negative detections. Our study illus-
trates how the careful selection of primer pairs and bioinformatic pipelines can make 
eDNA metabarcoding a more reliable tool for fish monitoring.
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Introduction

Environmental DNA (eDNA) metabarcoding has become a valuable tool for 
monitoring fish species in different habitats (McDevitt et al. 2019; Wang et al. 
2021; Miya 2022). Several studies have compared eDNA-based monitoring 
to traditional monitoring approaches, such as gillnetting or electrofishing, 
proving eDNA metabarcoding to be a reliable, fast, sensitive, non-invasive, 
and cost-efficient method for fish detection (Pont et al. 2018; Fujii et al. 2019; 
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Boivin-Delisle et al. 2021). However, applying eDNA metabarcoding comes 
with certain challenges such as the selection of appropriate sampling strat-
egies and wet lab processing steps, completeness of reference databases, 
and choice of appropriate primers (Evans et al. 2017; Kumar et al. 2022). As 
a prerequisite for comprehensive biodiversity monitoring, suitable primers 
are crucial to avoid false-negative detection and accurately depict the pres-
ent fish fauna (Schenekar et al. 2020). A plethora of primer pairs suitable for 
eDNA metabarcoding targeting fish have been published (reviewed in Xiong 
et al. 2022). While some primer pairs broadly amplify eukaryotic DNA, such 
as the Leray-XT (Wangensteen et al. 2018) or Minibar primer pairs (Meusnier 
et al. 2008), other primer pairs more specifically target vertebrates (Kitano 
et al. 2007; Riaz et al. 2011). If the main goal is to assess the fish fauna, 
many primer pairs optimised to detect fish biodiversity are available. One 
of the most widely used universal fish primer pairs is MiFish-U (Miya et al. 
2015). Based on this primer pair several, modified versions have been de-
veloped, such as the teleo (Valentini et al. 2016), elas02, and tele02 primer 
pairs (Taberlet et al. 2018). Many other primer pairs that either target marine 
(e.g., Thomsen et al. 2012; West et al. 2021) or freshwater fish species (e.g., 
Minamoto et al. 2012; Evans et al. 2016) can be used. In general, the choice 
of primers is a crucial part of planning a study as it directly depends on the 
target fish community.

Mock community metabarcoding is an efficient in vitro approach to test 
the performance of primer pairs using an artificially composed DNA mixture 
representing the expected target community (Hänfling et al. 2016; Elbrecht et 
al. 2019). While different metabarcoding fish primers have been evaluated on 
natural communities, larger systematic tests of primers with fish mock com-
munities are missing (Bylemans et al. 2018a; Miya et al. 2020; Zhang et al. 
2020; Shu et al. 2021). These studies focused on the detection of Asian and 
Australian fish species, which are genetically divergent and differing in species 
composition from the Central European fish fauna. Primer pairs for European 
fish communities have for now only been evaluated for estuarine and cos-
tal eDNA samples (Collins et al. 2019) and on smaller scale for UK lake fish 
(Hänfling et al. 2016). Thus, especially for the implementation of fish eDNA 
metabarcoding in routine monitoring contexts such as the European Water 
Framework Directive (Hering et al. 2018; Pont et al. 2021), it is crucial to evalu-
ate suitable primer pairs AE / BE not consistent. By assessing their capability 
to detect present species, while minimizing false-positive and false-negative 
results (from here on referred to as detection ability) of the most common 
European freshwater fish species.

In this study, we addressed this issue and evaluated five commonly used 
fish eDNA metabarcoding primer pairs targeting three different barcode mark-
er regions (12S, 16S, and cytochrome c oxidase subunit I gene) by testing their 
performance on an artificial community ('mock') composed of DNA from 45 
Central European fish species. Specifically, we examined the detection ability 
and reproducibility of the five primer pairs, investigated their false-positive and 
false-negative detection rates, and investigated primer-specific biases. Finally, 
we conclude with a primer pair recommendation for eDNA metabarcoding ap-
proaches targeting fish in routine monitoring campaigns of the ichthyofauna 
in Central Europe.
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Methods

Fish swabs

Mucus samples of 66 specimens (45 species) were collected by fish bioassess-
ment experts during electrofishing campaigns in autumn 2020 at five sites across 
Germany, covering both the Rhine and the Danube catchment. Each mucus sam-
ple was collected individually using sterile swabs (FLOQ Swab 80 mm, minitip, 
without medium, sterile sleeve; COPAN, Italy). All fish were handled as efficiently 
as possible outside the water to keep the stress to a minimum, while a sterile 
swab was moved across the specimens’ flank. Swabs were placed back into the 
sleeve without further preservative and sealed. After field work, samples were 
stored at 4 °C until delivery to the University of Duisburg-Essen. Upon arrival the 
swabs were stored at -20 °C overnight followed by DNA extraction the next day.

DNA extraction

Swab tips were clipped off at the handle and placed in a sterile 1.5 mL Eppendorf 
tube before 1 mL TNES buffer and 15 µL Proteinase K (300 U/mL, 7BioScience, 
Neuenburg am Rhein, Germany) were added to the sample. Samples were incu-
bated at 55 °C and shaken at 1000 rpm for 3 h on an Eppendorf ThermoMixer 
C (Eppendorf AG, Hamburg, Germany). Subsequently, DNA was extracted using 
an adapted NucleoMag tissue kit (Macherey Nagel, Düren, Germany; Suppl. ma-
terial 7). In total, a volume of 400 µL per sample was used and DNA was eluted 
in a final volume of 50 µL elution buffer. DNA concentration of each sample 
was measured using a Qubit dsDNA HS Assay-Kit on a Qubit v2 fluorometer 
(Thermo Fisher Scientific).

Mock community composition

Two fish mock communities were created using the extracted fish swab DNA. 
Both mock communities contained DNA of the same 45 fish species (Suppl. 
material 3). The first normalized mock community (MC1) was equimolarly 
pooled to 2 ng DNA per species. A second mock community (MC2) was pooled 
using 1 µL of each extract to generate a mock community with different DNA 
concentrations per species. MC2 was used to test for potential correlation 
between DNA concentration and number of reads. When multiple specimens 
were collected for a species, only the sample with the highest DNA concentra-
tion was used for the composition of the mock community in order to represent 
each species only by a single individual.

DNA amplification and sequencing

Both mock communities were assessed using five different published primer 
pairs (Table 1) for DNA amplification: tele02 (Taberlet et al. 2018), MiFish-U 
(Miya et al. 2015), 12Sv5 (Riaz et al. 2011), SeaDNA-mid (Collins et al. 2019), 
and L2513/H2714 (Kitano et al. 2007). A two-step PCR approach (Bohmann et 
al. 2022) was applied for amplifying the molecular marker genes and tagging of 
amplicons with barcodes and Illumina sequencing adaptors. In the 1st-step PCR 
step, tagged versions of the five fish primer pairs were used (Table 1).
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Table 1. Primer pairs used for PCR amplification of the fish mock community.

Name Gene Primer pair Forward sequence (5’-3’) Reverse sequence (5’-3’) Annealing 
temp.

Target 
length Publication

tele02 12S tele02_fw/tele02_rv AAACTCGTGCCAGCCACC GGGTATCTAATCCCAGTTTG 52 °C ~ 167 bp Taberlet et al. 2018

MiFish-U 12S MiFish-U_fw/
MiFish-U_rv

GTCGGTAAAACTCGTGCCAGC CATAGTGGGGTATCTAATCCCAGTTTG 59 °C ~ 170 bp Miya et al. 2015

SeaDNA-
mid

COI coi.175f/coi.345r GGAGGCTTTGGMAAYTGRYT TAGAGGRGGGTARACWGTYCA 53 °C ~ 130 bp Collins et al. 2019

12SV5 12S 12S‐V5f/12S‐V5r ACTGGGATTAGATACCCC TAGAACAGGCTCCTCTAG 52 °C ~ 106 bp Riaz et al. 2011

LH16S 16S L2513/H2714 GCCTGTTTACCAAAAACATCA CTCCATAGGGTCTTCTCGTCTT 55 °C ~ 220 bp Kitano et al. 2007

In total, 60 1st-step PCR amplifications were conducted, including five repli-
cates for each mock community (MC1 and MC2) and two negative PCR con-
trols for each of the five primer pairs. The reaction volume was 25 µL, con-
sisting of 12.5 µL Multiplex Mastermix (Qiagen Multiplex PCR Plus Kit, Qiagen, 
Hilden, Germany), 7 µL PCR-grade water, 2.5 µL CoralLoad dye, 0.5 µL forward 
primer, 0.5 µL reverse primer (10 µM each), and 2 µL of DNA template. The 1st-
step PCR included following steps: 5 min 95 °C initial denaturation, followed by 
10 cycles of 30 s at 95 °C, 90 s at decreasing annealing temperature (starting 
from annealing temperature +10 °C), and 30 s at 72 °C, followed by 25 cycles 
of 30 s at 95 °C, 90 s at the respective annealing temperature (see Table 1 for 
primer-specific temperatures), and 30 s at 72 °C. The final elongation was 10 
min at 68 °C. Subsequently, PCR products were size selected using magnetic 
beads (ratio 0.7, https://doi.org/10.17504/protocols.io.36wgqj45xvk5/v2) to 
remove excessive primers and reduce subsequent primer dimer formation.

In the 2nd-step PCR, Illumina sequencing adapters with a dual twin-indexing sys-
tem were added (Buchner et al. 2021; Bohmann et al. 2022). For each sample, the 
2nd-step PCR mix contained, 7.5 µL Multiplex Mix, 1.8 µL PCR-grade water, 1.5 µL 
CoralLoad dye, 1.2 µL combined primer (5 µM), and 3 µL 1st-step PCR product. The 
2nd-step PCR included the following steps: 5 min 95 °C initial denaturation, followed 
by 10 cycles of 30 s at 95 °C and 120 s at 72 °C. The final elongation was 10 min at 
68 °C. The 2nd-step PCR products were visualized on a 1% agarose gel to evaluate 
amplification success. Then, PCR products were size selected using magnetic nor-
malization beads (ratio 0.7, https://doi.org/10.17504/protocols.io.q26g7y859gwz/
v1) to normalize sample concentration and remove excessive primers and primer 
dimers. Subsequently, all normalized PCR products were pooled into one library. 
The pooled library was concentrated using a NucleoSpin Gel and PCR Clean-up 
kit (Macherey Nagel, Düren, Germany) following the manufacturer’s protocol. The 
final elution volume of the library was 40 µL. The library was then analysed us-
ing a Fragment Analyzer (High Sensitivity NGS Fragment Analysis Kit; Advanced 
Analytical, Ankeny, USA) to check for potential primer dimers and co-amplification, 
and to quantify the DNA concentration of the library. The final library was sequenced 
on a MiSeq 250 bp PE V3 Illumina platform at CeGat (Tübingen, Germany).

Bioinformatics

Raw reads were received as demultiplexed fastq files. All samples were pro-
cessed with the APSCALE-GUI pipeline v1.1.6 (Buchner et al. 2022), which 
is based on VSEARCH (Rognes et al. 2016) and cutadapt (Martin 2011). 
Each primer pair was processed separately. All settings were kept as default 

https://doi.org/10.17504/protocols.io.36wgqj45xvk5/v2
https://doi.org/10.17504/protocols.io.q26g7y859gwz/v1
https://doi.org/10.17504/protocols.io.q26g7y859gwz/v1
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(maxdiffpct = 25, maxdiffs = 199, minovlen = 5; maxEE = 1; min size to pool = 4), 
and OTUs were clustered with a 97% percentage similarity threshold. For the 
ribosomal genes 12S and 16S that have a somewhat lower mutation rate com-
pared to COI we also used a more stringent clustering threshold of 99%. As this 
did not substantially alter the results, we used a single workflow subsequent-
ly. Subsequently, taxonomy was assigned using the ‘local BLAST’ function in 
APSCALE with the Midori2 databases (v249 of CO1, lrRNA for 16S and srRNA 
for 12S; Leray, Knowlton, and Machida 2022) as reference (default word size 11).

The taxonomic assignment of each OTU was filtered using APSCALE-GUI 
(Fig. 1). Initially, taxonomic assignments were filtered by e-value (hits with the 
lowest e-value are kept) and hits with the same taxonomy were dereplicated. 
Subsequently, assignment of taxonomic levels was done using a similarity 
threshold approach (species ≥ 97%, genus ≥ 95%, family ≥ 90%, order ≥ 85%). 
If at this point more than one taxon assigned to species level remained, addi-
tional filtering and flag raising steps were performed as follows: All ambigu-
ous taxa were saved to a separate column in the taxonomy table. The number 

Figure 1. Decision tree for taxonomic assignment implemented in APSCALE-GUI v1.2.0.
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of occurrences per remaining taxon was counted. If a dominant species was 
present, it was selected for taxonomic assignment (“F1 – Dominant taxon”). 
Otherwise, if two species of the same genus remained, the genus was saved 
with the two possible species names separated by slash (e.g., Leuciscus idus/
leuciscus; “F2 – Two species, one genus”). If more than two species belonging 
to different genera remained, the number of genera was counted. If one genus 
(and multiple species) was present the genus was saved (e.g., Hucho sp. with 
the ambiguous assignments Hucho bleekeri, Hucho hucho, and Hucho taimen; 
“F3 – Multiple species of one genus”). Lastly, if more than one genus remained 
and no dominant taxon was present, the taxonomic assignment was trimmed 
to the most recent common taxon (“F4 – Multiple genera”). Both the taxonomy 
and read tables were then converted to TaXon tables (Suppl. material 8) for 
downstream analyses in TaxonTableTools v1.4.7 (TTT, Macher et al. 2021a). To 
account for potential contamination the sum of reads in the negative controls 
of each OTU was subtracted from the number of reads for the respective OTU 
of each sample (‘Negative control subtraction’ tool). Subsequently, all tables 
were filtered for fish and lamprey species (Suppl. material 9). Here, all OTUs 
with a ≥97% similarity but without species assignment were manually checked 
and adjusted if e.g., a hybrid or erroneous entry was preventing a species as-
signment (Suppl. material 10). If the taxonomy was ambiguous due to the as-
signment to geographically clearly separated species with equal similarity val-
ues, the species which is reported from the area was selected. The distribution 
information was collected from the gbif database (www.gbif.org).

Analyses were performed using custom python scripts (Suppl. material 11) and 
results were visualized using the plotly package https://plot.ly. For all primer pairs, 
the OTU and read proportions of target taxa (i.e., fish and lamprey) and bycatch 
taxa (i.e., all other taxa) were calculated. Additionally, the number of ambiguous 
species-level OTUs and the number of occurrences of each flag was calculated. 
For all subsequent analyses the manually adjusted TaXon tables were used.

Statistical analyses

First, the relative read abundances (%) for the target species (i.e., fish) and 
non-target species (bycatch) present in the mock were calculated for each 
primer pair. Additionally, the relative OTU proportions of target and bycatch 
species were calculated. Also, the proportions of species-level OTUs assigned 
to the four flags (F1–F4) and supported species were calculated. All three anal-
yses were displayed as bar charts.

Second, to assess each primer pair’s detection abilities, Venn diagrams 
comparing the detected species of each primer pair to the original fish mock 
community composition were created in TTT. Additional Venn diagrams were 
created to compare the pre-adjusted TaXon tables.

Third, the log transformed number of reads and the log transformed DNA 
concentration (ng/µL) were plotted and Pearson coefficients were calculated. 
Also, the log transformed number of reads per species of MC2 were plotted 
against the log transformed reads per species of MC1 and a Pearson coeffi-
cients was calculated.

Additionally, oversplitting rates (i.e., number of additional OTUs) were calcu-
lated for all species and each primer pair. Also, PCR replicates were investigated 

https://plot.ly
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by calculating the mean, minimum, and maximum Jaccard index of all five tech-
nical replicates per primer pair.

To estimate the completeness of our fish mock community, we downloaded 
all freshwater fish species reported from Germany and their occurrence cate-
gories per fishbase.org (categories: “endemic”, “introduced”, “native”, “not es-
tablished”, “questionable”, and “stray”).

To investigate the reference sequence coverage for the fish species present 
in the mock community, the three Midori2 databases used for taxonomic assign-
ment were searched for the respective species and all their records were extracted 
into three separate fasta files per species (COI, lrRNA, and srRNA). Subsequently, 
cutadapt was used to search all four possible combinations (considering reverse 
complements) of each primer pair. An error rate of 0.3 (-e 3) was allowed and the 
primers were required to be linked (forward…reverse). Here, each detected bar-
code was only counted once (in the four possible combinations). Consequently, 
for each of the three markers used, the overall number of available reference se-
quences, the number of matches per primer pair, and its respective proportion were 
calculated for all fish species in the mock community. Since in some cases only 
the target fragment without the primer binding site was uploaded as reference se-
quence, cutadapt consequently reported false-negative results to a certain degree. 
Thus, we manually checked all cases for which at least one reference sequence 
was found per species and marker, but no primer pair match was observed.

Results

Fish mock community composition

According to the fishbase database, 123 freshwater fish species are reported from 
Germany. Here we manually added the round goby (Neogobius melanostomus) 
and the rainbow trout (Oncorhynchus mykiss), as they are both non-native species 
reported from Germany, but were not present in the fishbase list. Consequently, 
our fish mock community of 45 Central European freshwater fish species rep-
resents about 36.6% of fish reported from Germany (Suppl. material 4). In detail, 
our mock community accounts for 50% of “native”, 26% of “introduced”, 22.2% of 
“questionable”, and 8% of “not established” fish species in Germany.

DNA extraction, sequencing, and bioinformatics

DNA was successfully extracted from 66 swabs, yielding an average DNA concen-
tration of 5.73 ng/µL, ranging from 0.05 ng/µL to 26.3 ng/µL (Suppl. material 3). 
Sequencing of mock community library yielded a total of 8,254,293 raw reads 
across all primer pairs. In total, 7,745,593 quality-filtered reads were clustered into 
140 (tele02), 105 (MiFish-U), 120 (12SV5), 111 (SeaDNA-mid), and 142 (LH16S) 
OTUs, respectively. In total, 4379 reads were detected in the negative controls 
(tele02: 22 reads, MiFish: 19, 12SV5: 4338, SeaDNA-mid: 0, and LH16S: 0), which 
were then subtracted. Nearly all primer pairs showed little amplification of non-
fish OTUs (between 96 to 98% fish OTUs), except for the SeaDNA-mid primer pair, 
which exhibited 50% non-fish OTUs, (Fig. 2A). However, only few reads were as-
signed to non-target OTUs for all primer pairs (between 98.2 and 100% fish OTUs; 
Fig. 2B). The proportions of flagged taxonomic assignments varied between the 
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five different primer pairs. Here, both the MiFish-U and tele02 primer pairs had the 
highest proportion of supported species-level OTUs (both 60%), followed by the 
SeaDNA-mid (49%), 12SV5 (46%), and LH16S (41%) primer pairs (Fig. 2C). The 
flag ‘Two species, one genus’ (Flag 2) was most prominent in the SeaDNA-mid 
(25%) and least prominent in the 12SV5 primer pair (10%). For the flag ‘Multiple 
species of one genus’ (Flag 3) again the SeaDNA-mid showed the highest pro-
portions (16%), while both the tele02 and MiFish-U primer pairs had the fewest 
cases (5%). Furthermore, the 12SV5 primer pair showed the highest proportion 
of the flag ‘Dominant taxon’ (Flag 1) with 27% assigned species-level OTUs, while 
again the tele02 primer pair showed the fewest (9%). The SeaDNA-mid primer 
did not have any cases of flag ‘Multiple genera’ (Flag 4), while the LH16S primer 
pair had the most (9%). Overall, the most abundant ambiguous assignment was 
Leuciscus idus/leuciscus (10 total occurrences), followed by Sander canadensis/
lucioperca (8), Blicca bjoerkna (7), Proterorhinus semilunaris/marmoratus (6), and 

Figure 2. Proportions of fish and non-fish OTUs (A) and read proportions (B) detected 
with the five different primer pairs (A), and the proportions of ambiguous taxonomic as-
signments (flags 1–4) for all species-level OTUs (C), based on the pre-adjusted datasets.
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Cyprinus carpio and Hucho sp. with each 5 cases (Suppl. material 5). Overall, the 
genera Leuciscus and Sander showed the highest number of ambiguous taxo-
nomic assignments (14 and 13, respectively).

Taxonomic composition comparison

After removal of bycatch taxa and curation of ambiguous taxonomic assign-
ments, the 12SV5 primer pair (45) included most species, followed by LH16S (40), 
tele02 (39 species), MiFish-U (37), and SeaDNA-mid (36). In comparison to the 
original mock community fish species composition, the tele02 dataset showed 
the highest congruence (2 false-positive species, 37 true positive, and 8 false-neg-
ative), followed by the MiFish-U (2, 35, 10) and SeaDNA-mid (3, 33, 12). Both the 
12SV5 (18, 27, 18) and LH16S primer pair (17, 23, 22) were less congruent to 
the original mock community composition (Fig. 4). The 12SV5 and LH16S primer 
pairs resulted in OTUs assigned to several marine fish taxa, which were not part 
of the mock community, including Acanthuridae (surgeon fishes), Kyphosidae 
(sea chubs), Ophidiidae (cusk-eel), Peristediidae (armoured sea robins), Pholidae, 
and Zoarcidae (eelpouts; Fig. 3A, B). Regarding the number of false-positive and 
false-negative assignments per family, the LH16S primer pair showed high incon-
gruences to the mock community, particularly for the Leuciscidae (4 false-posi-
tive / 10 false-negative) and Percidae (2/2). Similarly, the 12SV5 primer pair had 
various false-positive and false-negative assignments for the Leuciscidae (6/5), 
Cyprinidae (4/0), or Gobionidae (3/1). The SeaDNA-mid primer showed only a 
moderate number of incorrect assignments in the Leuciscidae (2/6). Lastly, the 
tele02 and MiFish-U primer pairs were overall the least prone to false-positive as-
signments and only showed false-positive assignments in Leuciscidae (Leuciscus 
aspius) and Salmonidae (Parahucho perryi and Brachymystax lenok).

Primer bias impact on species detection

As a measure of primer bias the standard deviation of relative read abundances 
was across primer pairs. Here the standard deviation varied between the prim-
er pairs ranging from an average of < 0.01% (Barbatula barbatula, Leucaspius 
delineatus, Neogobius melanostomus, Phoxinus phoxinus, and Romanogobio 
albipinnatus) to a maximum of 7.5% (Pungitius pungitius; Table 2A). While most 
species were detected with at least four primer pairs (29 mock community 
species), 10 species were detected with three or less primer pairs. In total, six 
species were not detected by any of the primer pairs, namely Cottus gobio, 
Gymnocephalus schraetser, Lampetra fluviatilis, Rutilus pigus, Umbra krameri, 
and Zingel zingel. Most false-positive species were unique to one primer pair 
(34 of 37 species; Table 2B), while only three species were detected with two 
or more primer pairs, namely Leuciscus aspius (4 occurrences), Pungitius platy-
gaster (2), and Umbra pygmaea (2).

Evaluation of oversplitting rates

In total, 48 cases of oversplitting (in our case species with more than one OTU 
assigned) were observed (Suppl. material 6). Most oversplit species-level as-
signed OTUs were found with the tele02 primer pair (12), while all other primer 
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pairs showed nine cases of oversplitting. The highest oversplitting rate was 
observed in Gymnocephalus cernua (7-fold OTU to species ratio, tele02 primer 
pair) and Tinca tinca (7-fold, 12SV5). While no over-split species was found 
in all five or even four of the primer pairs, six species were over split in three 
primer pairs (i.e., Abramis brama, Blicca bjoerkna, Ctenopharyngodon idella, 
Gymnocephalus cernua, Hucho hucho, and Sander lucioperca).

PCR replicate consistency assessment

PCR replicates were highly consistent for all investigated primer pairs. The 
12SV5 primer pair showed the highest reproducibility (mean Jaccard similar-
ity of 0.99), followed by LH16S (0.98), SeaDNA-mid (0.96), tele02 (0.96), and 
MiFish-U (0.95). No correlations between log transformed input DNA concen-
tration (ng/µL) and log transformed reads of the second mock community 
(MC2) were found for all primer pairs (Pearson correlation between 0.12 and 
0.16, p≥0.05; Suppl. material 1). However, when comparing the number of log 
transformed reads per species between MC1 and MC2, significant Pearson 
correlations for the tele02 (0.8, p≤0.05), MiFish-U (0.79, p≤0.05), 12SV5 (0.8, 
p≤0.05), SeaDNA-mid (0.81, p≤0.05), and LH16S (0.68, p≤0.05) primer were 
found (Suppl. material 2).

Reference database coverage

The Midori2 v249 reference database assessment showed that for COI mark-
ers most reference sequences are available (2313), followed by the lrRNA 

Figure 3. A Overall number of fish species and the respective number of OTUs (in brackets) per family detected in the 
mock community for each primer pair. B Number of false-positive (n/) and false-negative (/n) fish species detections 
compared to the original fish mock community composition.
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(809), and srRNA (379) markers (Table 3). In detail, the SeaDNA-mid (COI) 
primer showed the highest number of matches within the available reference 
sequences (avg. 96.85% coverage) Only one species did not possess a refer-
ence sequence (i.e., Romanogobio albipinnatus) for COI. The LH16S primer also 
showed a high coverage (avg. 91.84%). Here, two species did not have a refer-
ence sequence available (i.e., Romanogobio albipinnatus and Rutilus pigus). On 
the other hand, the srRNA coverage was drastically lower for all three investi-
gated primer pairs. The 12SV5 and tele02 primer pairs showed slightly higher 
coverage (avg. 77.75% and 76.06%) compared to the MiFish-U primer pair (avg. 
66.05%). Four species in total did not have a match for any on the srRNA primer 
pairs (i.e., Gymnocephalus schraetser, Rutilus pigus, Zingel streber, and Zingel 
zingel). Another two species were only detected with one of the srRNA primer 
pairs (i.e., Misgurnus fossilis and Umbra rameria).

Figure 4. Comparison of the fish mock community species composition to the detected species with each primer pair 
for both the adjusted (large Venn diagrams) and the pre-adjusted datasets (small Venn diagrams). All species declared 
as false-positive detections are listed on the left-hand side of the respective Venn diagram.
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Table 3. Assessment of the Midori2 reference database (v249) coverage for the species present in the fish mock com-
munity. The overall number of reference sequences per maker region (COI, lrRNA for 16S, and srRNA for 12S) and the 
number and percentage of matching reference sequences for each primer are shown.

Species
COI lrRNA srRNA

References SeaDNA-
mid

SeaDNA-
mid (%) References LH16S LH16S 

(%) References 12SV5 12SV5 
(%) MiFish-U MiFish-U 

(%) tele02 tele02 
(%)

Abramis brama 34 34 100 6 6 100 7 6 85.71 6 85.71 7 100

Alburnus alburnus 59 59 100 9 9 100 3 3 100 2 66.67 2 66.67

Anguilla anguilla 169 168 99.41 165 146 88.48 26 25 96.15 23 88.46 24 92.31

Barbatula barbatula 48 47 97.92 10 10 100 7 6 85.71 6 85.71 7 100

Barbus barbus 25 25 100 4 4 100 4 3 75 2 50 3 75

Blicca bjoerkna 25 25 100 9 9 100 3 3 100 3 100 3 100

Carassius carassius 23 23 100 8 7 87.5 5 5 100 4 80 4 80

Chondrostoma 
nasus

35 34 97.14 4 4 100 3 2 66.67 2 66.67 2 66.67

Cottus gobio 27 27 100 5 4 80 2 2 100 2 100 2 100

Cottus rhenanus 10 10 100 1 1 100 1 1 100 1 100 1 100

Ctenopharyngodon 
idella

57 56 98.25 23 23 100 12 9 75 11 91.67 12 100

Cyprinus carpio 261 246 94.25 110 98 89.09 72 62 86.11 50 69.44 54 75

Esox lucius 65 65 100 21 21 100 12 11 91.67 4 33.33 4 33.33

Gasterosteus 
aculeatus

93 92 98.92 23 20 86.96 23 18 78.26 11 47.83 16 69.57

Gobio gobio 26 26 100 11 10 90.91 4 3 75 3 75 4 100

Gymnocephalus 
cernua

40 40 100 9 9 100 6 6 100 4 66.67 4 66.67

Gymnocephalus 
schraetser

5 5 100 1 1 100 0 0 0 0 0 0 0

Hucho hucho 12 12 100 3 3 100 1 1 100 1 100 1 100

Hucho taimen 20 20 100 6 6 100 1 1 100 1 100 1 100

Lampetra fluviatilis 22 21 95.45 7 7 100 1 1 100 1 100 1 100

Leucaspius 
delineatus

25 24 96 6 6 100 1 1 100 1 100 1 100

Leuciscus idus 28 28 100 7 7 100 4 3 75 2 50 3 75

Leuciscus 
leuciscus

59 57 96.61 29 29 100 3 1 33.33 1 33.33 3 100

Lota lota 44 42 95.45 15 14 93.33 11 10 90.91 9 81.82 9 81.82

Misgurnus fossilis 12 12 100 2 1 50 1 0 0 0 0 1 100

Neogobius 
melanostomus

45 45 100 5 5 100 7 6 85.71 5 71.43 5 71.43

Oncorhynchus 
mykiss

124 123 99.19 36 31 86.11 23 18 78.26 16 69.57 17 73.91

Perca fluviatilis 62 62 100 35 35 100 13 11 84.62 7 53.85 8 61.54

Phoxinus phoxinus 177 176 99.44 17 17 100 13 11 84.62 11 84.62 13 100

Oxyeleotris 
marmorata

17 17 100 5 5 100 6 5 83.33 4 66.67 5 83.33

Pseudorasbora 
parva

108 108 100 37 35 94.59 13 9 69.23 9 69.23 13 100

Pungitius pungitius 61 56 91.8 40 40 100 21 20 95.24 15 71.43 16 76.19

Rhodeus amarus 27 27 100 4 4 100 1 1 100 1 100 1 100

Rhodeus sericeus 10 10 100 1 1 100 3 2 66.67 1 33.33 2 66.67

Romanogobio 
albipinnatus

0 0 0 0 0 0 1 1 100 1 100 1 100

Rutilus pigus 2 2 100 0 0 0 0 0 0 0 0 0 0

Rutilus rutilus 56 55 98.21 12 12 100 7 6 85.71 3 42.86 3 42.86

Salmo trutta 143 142 99.3 57 52 91.23 19 17 89.47 14 73.68 16 84.21
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Discussion

Detection ability, and reproducibility

Our primer evaluation based on mock communities of 45 European freshwater 
fish species confirmed the previously reported high detection ability for two prim-
er pairs (MiFish-U and tele02) belonging to the MiFish primer group (Bylemans et 
al. 2018a; Taberlet et al. 2018; Collins et al. 2019; Polanco et al. 2021). The tele02 
primer pair (a modified version of the MiFish-U primer pair) performed particu-
larly well in our study and clearly showed the highest species specificity and 
detection ability for European freshwater species. Until now the tele02 primer 
pair was evaluated in silico (Taberlet et al. 2018; Collins et al. 2019) as well as for 
water samples from Beijing, where it exhibited outstanding detection success of 
fish diversity in comparison with other fish-specific primers tested (Zhang et al. 
2020). Accordingly, our results show that the tele02 primer pair recovered most 
true-positive species while producing the lowest number of false-positive and 
negative detections. From all primer pairs tested in this and other studies, the 
tele02 primer pair is arguably the best currently available choice for fish eDNA 
metabarcoding of European freshwater fish. Its only caveat might be the highest 
observed oversplitting rate of the investigated primer pairs. While this does not 
affect the analysis when working on species level (i.e., OTUs of the same spe-
cies are merged), the alpha diversity is artificially inflated. Here we observed that 
particularly the Leuciscidae showed drastically higher numbers of OTUs than 
species. If the analysis of OTUs is of particular interest, this issue can be tackled 
by e.g., using a post-clustering curation algorithm, such as LULU filtering (Frøslev 
et al. 2017), which should give more reliable biodiversity estimates e.g., when 
taxonomic references are lacking. However, this is not of further concern when 
working with the taxonomic assignment, since OTUs with unique taxonomic as-
signments can simply be merged. While the SeaDNA-mid primer pair, targeting 
the COI gene, showed comparable good detection ability (i.e., true-positive de-
tections), the co-amplification of non-fish taxa with this primer pair might be 
of concern. The fish mucus likely accumulates eDNA molecules and thus also 
contains DNA from other organisms than the fish itself. Here, the SeaDNA-mid 
primer pair was the only primer pair that showed high numbers of non-target 
OTUs (e.g., Annelida, Arthropoda, Bacillariophyta, Chlorophyta, Oomycota, and 
Rotifera). While non-target OTUs were observed in low read abundances for the 
mock communities, co-amplification issues could be more pronounced when 

Species
COI lrRNA srRNA

References SeaDNA-
mid

SeaDNA-
mid (%) References LH16S LH16S 

(%) References 12SV5 12SV5 
(%) MiFish-U MiFish-U 

(%) tele02 tele02 
(%)

Sander lucioperca 28 28 100 7 7 100 5 3 60 5 100 5 100

Scardinius 
erythrophthalmus

30 30 100 8 7 87.5 5 4 80 3 60 4 80

Silurus glanis 25 25 100 6 6 100 2 2 100 2 100 2 100

Squalius cephalus 62 60 96.77 8 8 100 4 4 100 3 75 3 75

Thymallus 
thymallus

49 49 100 22 20 90.91 16 15 93.75 15 93.75 15 93.75

Tinca tinca 48 47 97.92 9 9 100 6 5 83.33 4 66.67 5 83.33

Umbra krameri 2 2 100 1 1 100 1 1 100 0 0 0 0

Zingel streber 9 9 100 3 3 100 0 0 0 0 0 0 0

Zingel zingel 4 4 100 2 2 100 0 0 0 0 0 0 0
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applying the SeaDNA-mid primer pair on environmental samples. Here, com-
parably deeper sequencing depths might be required to detect all present fish 
species in an environmental sample with more non-target DNA, which would re-
duce the cost-efficiency per sample. The remaining two primer pairs 12SV5 and 
LH16S were designed to generally amplify vertebrate DNA (Kitano et al. 2007; 
Riaz et al. 2011; Hänfling et al. 2016; Harper et al. 2019). We decided to include 
these primer pairs since they have the potential for more holistic monitoring ap-
proaches, e.g., targeting the whole vertebrate community associated to a fresh-
water habitat (Pertoldi et al. 2021; Dou et al. 2023). However, the broader target 
range resulted in a drastically lower detection rate of fish.

Overall, all primer pairs generated highly reproducible taxa lists among the 
PCR replicates for the mock fish communities. However, this might not be 
achieved for environmental samples in which a lower reproducibility is expect-
ed. Therefore, sufficient field and laboratory replicates to maximize species 
detection and minimize stochastic sampling effects are recommended (Sato 
et al. 2017; Bylemans et al. 2018b; Macher et al. 2021b; Rojahn et al. 2021). 
Particularly the SeaDNA-mid primer pair might suffer from lower reproducibility 
for environmental samples due to the strong co-amplification.

Read proportions

Independent fish mucus samples used for DNA extraction are likely to con-
tain different proportions of target fish species DNA and other, non-target DNA 
(e.g., of microbes). Solely for this reason, differences in relative read abundanc-
es between the 45 species of the used mock community were already to be 
expected. In contrast, different read proportions between primer pairs within 
one species were unexpected, as all used marker regions are mitochondrial 
and hence present in an equal copy number. However, several species showed 
overproportional read abundances for one of the used primer pairs, such as 
Perca fluviatilis (12SV5: 12.65% to an average of other primer pairs of 1.04%), 
Hucho hucho (SeaDNA-mid: 17.36% to 2.5%), or Pungitius pungitius (SeaDNA-
mid: 17.49 to 0.65%). The observed differences in read proportion hint at dif-
ferent primer binding efficiencies for the tested primer pairs and species pres-
ent in the mock community. As a consequence, the primer choice can have 
direct implications when using read abundances as a proxy for fish biomass 
(Takahara et al. 2012; Kelly et al. 2019; Muri et al. 2020). While trends between 
read abundances and biomass might exist, the interpretation of reads as proxy 
for biomass should be taken with caution and be interpreted with respect of the 
characteristics of the chosen primer pair.

False-negative assignments

The Midori2 database is a curated version of the larger GenBank database and 
can be used as a reliable source for taxonomic assignment of fish OTUs. All 
species present in the mock community have reference sequences available for 
at least one genetic marker. However, seven species were not detected at all.

Amongst these was Cottus gobio, a common fish species in Central Europe 
for which 34 reference sequences comprising all three investigated markers 
are deposited in Midori2 v249. Although a taxonomic assignment was possible, 
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no primer pair detected C. gobio in the mock communities. Since this species is 
frequently detected with eDNA metabarcoding from various sites and samples 
(Macher et al. unpublished data; tele02 primer pair), we cannot exclude the pos-
sibility that the C. gobio sample itself was the reason for the false-negative de-
tection, as it might not have contained C. gobio DNA in sufficient concentration 
or due to sampling or laboratory errors, such as specimen misidentification, a 
swab inaccurately taken or DNA degradation.

The striped ruffe (Gymnocephalus schraetser) only has 13 reference se-
quences available in the Midori2 database, none of which is a 12S sequence. 
Consequently, the lack of reference for the 12S marker prevents a species level 
assignment for the tele02, MiFish-U, and 12SV5 primer pairs. However, all 12S 
primer pairs included OTUs assigned to Gymnocephalus that were trimmed to 
genus level due to low reference similarity threshold (< 97%). While no primer 
pair was able to detect G. schraetser, the SeaDNA-mid COI primer contained one 
ambiguous OTU assigned to G. schraetser/cernua. Thus, it remains unclear if 
the stripped ruffe can be distinguished from G. cernua, using eDNA primer pairs.

Furthermore, various species are known to be indistinguishable with the short 
target fragment lengths used for eDNA metabarcoding. Particularly the two com-
mon lamprey species Lampetra fluviatilis and L. planeri could not be distinguished 
with any of the used primer pairs. The species status of these two ‘sister species’ 
has puzzled scientists for decades and while a genome-wide divergence can be 
observed (Mateus et al. 2013), they are known to share mitochondrial haplotypes 
(Espanhol et al. 2007). Considering that most eDNA primer pairs target short mito-
chondrial fragments of approximately 180 bp, a distinction of these species with 
eDNA metabarcoding will most likely not be possible in the foreseeable future.

The zingel (Zingel zingel) was not detected by any primer pair despite the 
availability of COI and sRNA reference sequences in the Midori2 database. The 
closely related Danube zingel (Zingel streber) has various COI and 16S refer-
ence sequence available and was detected by the SeaDNA-mid and LH16S 
primer pair. Thus, the most likely explanation for the absence of Zingel zingel is 
errors in sampling or laboratory handling that led to the sample failure.

Ambiguous detections

In several instances, the distinction between true-positive, false-positive, and 
false-negative detections were very narrow. For several species, we observed 
misidentification with closely related species, which resulted in false-positive 
and false-negative assignments in single cases. For example, a species that 
was not detected by any primer pair is Rutilus pigus, the Danube roach. This 
species is closely related to the cactus roach (R. virgo) which was once consid-
ered a subspecies (Rutilus pigus subsp. virgo (Heckel, 1852)) and occurs in the 
same habitats. However, since molecular data showed that R. pigus and R. virgo 
are separate species (Pourshabanan et al. 2022), either the reference taxonomy 
is incorrect, which can occur in a non-curated database such as Genbank, or the 
specimen that was sampled for the mock community was actually R. virgo. For 
both species COI reference sequences are available in the Midori2 database, 
however, no 12S or 16S reference sequences are present in v249. However, in 
Midori2 v255 nine 12S reference of which respectively at least four are match-
ing with the 12SV5, MiFish-U, and tele02 primer pair. In our dataset, the tele02 
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(1 OTU, 96.5%) and MiFish-U (1 OTU, 96.0%) both detected OTUs assigned to 
the genus Rutilus, besides Rutilus rutilus (which was present in the mock com-
munity), rendering these false-negative assignments as result of missing 12S 
reference sequences. These cases of false-negative or ambiguous assignment 
can easily be fixed by closing gaps in the reference database. Furthermore, the 
false-positive Rutilus virgo assignment by the SeaDNA primer pair was most 
likely not a false-positive detection due to primer bias or lack of reference se-
quences but rather a lack of species name harmonisation or misidentification.

For the European mudminnow (Umbra krameri), only four reference sequences 
(for 12S, COI, 16S) are available in the Midori2 v249 database and it was not detect-
ed by any primer pair in our study. According to the Midori2 database assessment 
the SeaDNA-mid, LH16S, and 12SV5 primer pairs could have detected U. krameri, 
as suitable reference sequence are available. Here, the SeaDNA-mid and 12SV5 
primer pairs false-positively detected the closely related species Umbra pygmaea 
and the teleo2, MiFish-U, and LH16S detected Umbra limi/pygmaea. Both U. limi 
(Central mudminnow) and U. pygmaea (Eastern mudminnow) are native to North 
America, and particularly the latter has been introduced to Western and Central 
Europe. One explanation for the incorrect assignments could be a misidentifica-
tion of the specimen from which the mucus sample was taken. If so, the specimen 
identified as European mudminnow was truly an invasive Eastern mudminnow. 
This case should be further investigated since the European mudminnow is listed 
as ‘vulnerable’ (IUCN Red List of Threatened Species in 2010) and should ideally be 
distinguishable from the invasive Eastern mudminnow with eDNA metabarcoding.

Furthermore, we observed several cases of “difficult” taxonomic assignments. 
Here, particularly OTUs assigned to the genera Hucho, Sander and Leuciscus 
caused ambiguities. The Danube salmon (Hucho hucho) was initially only detected 
by the SeaDNA-mid and LH16S primer pairs. The three 12S primer pairs faced am-
biguities caused by hits to the Sichuan taimen (Hucho bleekeri) and the Siberian tai-
men (Hucho taimen), which all share identical 12S sequences. However, since the 
Danube salmon is the only present species of the genus Hucho in Central Europe, 
H. bleekeri and H. taimen were ruled out for the tele02, MiFish-U and 12SV5 primer 
pairs. Similarly, the pikeperch (Sander lucioperca) is geographically clearly separat-
ed from the sauger (S. canadensis), but the two species are not genetically distin-
guishable with the investigated markers, leading to flag 2 ambiguities (“Two spe-
cies, one genus”). In this case, however, based on the current distribution ranges, 
one can account for this ambiguity, similarly to the Danube salmon. Nevertheless, 
if one of the Hucho or Sander species were to be introduced to Central Europe, not 
all primer pairs could distinguish the native species, which could be of concern for 
invasive species monitoring. The common dace (Leuciscus leuciscus) and ide (L. 
idus), however, are highly prone to causing flag 1 ambiguities. This can be caused 
by several reasons: for instance, species of the family Leuciscidae are known to 
commonly hybridize, such as the bleak (Alburnus alburnus) and chub (Leuciscus 
cephalus) (Wheeler 1978) or chub and roach (Rutilus rutilus) (Wheeler and Easton 
1978). This can lead to mitochondrial introgression, causing reference sequences 
of different species to be identical. Another reason is the wide distribution of com-
mon dace across Europe and its habitus typical for the family Leuciscidae. This 
can result in false species identification that is propagated to incorrect database 
entries, which ultimately can lead to ambiguous assignments. Here, a sophisticat-
ed curation of the Midori2 database, or the usage of a custom reference database, 
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including reference sequences from a known source, might help to reliably distin-
guish L. leuciscus and L. idus. Another reason for false-negative assignments may 
occur in the automated taxonomic assignment of OTUs due to unclear species 
status or the use of synonyms. For example, we were aware from previous eDNA 
metabarcoding datasets that Rhodeus amarus and R. sericeus are used synony-
mously and we corrected our dataset for this issue (Rhodeus amarus/sericeus).

While in this study we used the Midori2 database, which is a curated version 
of the Genbank database, another widely used reference library for mitochon-
drial sequences is the MitoFish database (Sato et al. 2018). While reference 
sequences for most fish are available in the MitoFish database, some species 
cannot be assigned due to the absence of e.g., whole genome sequences (e.g., 
Romanogobio albipinnatus). Additionally, the comparably lower overall number 
of reference sequences might be of concern in light of intraspecific variation 
and could lead to false-negative assignments.

False-positive assignments

The detection of false-positives is of particular concern since it drastically 
reduces the robustness of taxa lists. Particularly the less specific vertebrate 
primer pairs were prone to produce comparably high numbers of false-posi-
tive assignments. Here, 12SV5 and LH16S were the only datasets that included 
marine fish taxa, which were not present in the mock community of Central 
European freshwater fish. Since no marine samples have been processed in 
this laboratory, cross-contaminations can be ruled out. The most likely explana-
tion for these false-positive assignments is the placement of target fragments 
in conserved regions to amplify a broader taxonomic range (e.g., vertebrates). 
However, this will ultimately decrease the taxonomic resolution for specific 
taxa within that group (e.g., fish species). For the here investigated primer pairs 
most likely the short fragment length (12SV5 primer pair; 106 bp) or the frag-
ment location for the LH16S primer pair the number of substitutes is too low 
for reliable fish identification.

Furthermore, incorrect assignments of closely related species were observed 
for the less specific vertebrate primer pairs 12SV5 and LH16S. These included 
the Asian Chondrostoma prespense instead of C. nasus, the North American 
Thymallus arcticus instead of T. thymallus, or Pungitius platygaster instead of 
P. pungitius. Again, the conserved regions amplified by the 12SV5 and LH16S 
primer pairs could have led to these false-positive assignments. Particularly phy-
logenetically ‘young’ species that have not been separated long and e.g., share 
mitochondrial haplotypes (Espanhol et al. 2007) or closely related species that 
exhibit hybridisation and introgression (Hata et al. 2019; De Santis et al. 2021) 
are potentially not distinguishable with short and conserved target fragments.

However, also the tele02, MiFish-U and SeaDNA-mid primer pairs showed 
false-positive assignments. Even though the asp (Leuciscus aspius) was not 
included in the mock community, it was detected by all three primer pairs. Since 
it was consistently detected by the tele02 (2 OTUs, 98% similarity to reference 
sequence, 8578 reads, 10/10 samples), MiFish-U (2 OTUs, 98%, 7246 reads, 
10/10 samples), and the SeaDNA primer pair (1 OTU, 100%, 156 reads, 9/10 
samples), the most likely explanation for the detection of L. aspius is a mis-
identification during sampling (e.g., another closely related cyprinid species). 
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Another explanation is that the DNA of one species can be found in the mucus 
of another species’ mucus, which could potentially also contain eDNA traces 
from other fish that were present during sampling. Another case of false-posi-
tive detection is the Japanese huchen (Parahucho perryi), which was detected 
in low read abundances by the tele02 primer pair (1 OTU, 98%, 114 reads, 9/10 
samples). The Japanese huchen is not recorded from Central Europe but is 
related to both the huchen (Hucho hucho) and brown trout (Salmo trutta), which 
were both present in the mock community. The most likely explanation is that 
this false-positive assignment originates from huchen or brown trout DNA that 
is amplified by the tele02 primer pair followed by misassignment. The low read 
abundance observed in this dataset and its occurrence in combination with the 
brown trout in other eDNA metabarcoding datasets using the tele02 primer pair 
(Macher et al. unpublished data) hints towards a systematically false-positive 
detection of the Japanese huchen in the presence of the brown trout. A similar 
case is the detection of the Asian sharp-snouted lenok (Brachymystax lenok) 
with the MiFish-U primer pair, which is a salmonoid species related to trouts.

While most ambiguous taxonomic assignments and false-positive detec-
tions can be easily corrected using further information (e.g., species distribu-
tion), primer pairs that are not prone to false-positive assignments, such as the 
tele02, MiFish-U and the SeaDNA-mid primer pairs, are to be preferred over the 
less specific 12SV5 and LH16S primer pairs when investigating fish communi-
ties based on eDNA metabarcoding.

Conclusion

In conclusion, our study highlights how the choice of primer has a major ef-
fect on the outcome of eDNA metabarcoding analysis. Among the investigated 
primer pairs, the tele02 primer pair was the best choice for eDNA metabarcod-
ing of Central European freshwater fish, showing the highest detection abili-
ty and good reproducibility with the fewest false-positive and false-negative 
detections. We also observed that gaps in reference libraries can still lead to 
false-negative detections and thus should be addressed. Through careful se-
lection of the primer pair, laboratory protocol, and bioinformatic pipeline, eDNA 
metabarcoding is becoming an increasingly reliable tool for fish monitoring.

Disclaimer

The collection of mucus samples is not categorized as an animal experiment 
and did not require further authorisation. All sampling events were coordinat-
ed with local authorities. Fish specimens were solely caught during sampling 
events for monitoring campaigns and were handled by experts.
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