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Abstract
Plankton metabarcoding is increasingly implemented in marine ecosystem assessments and is more cost-efficient and less time-con-
suming than monitoring based on microscopy (morphological). 18S rRNA gene is the most widely used marker for groups’ and 
species’ detection and classification within marine eukaryotic microorganisms. These datasets have commonly relied on the acqui-
sition of organismal abundances directly from the number of DNA sequences (i.e. reads). Besides the inherent technical biases in 
metabarcoding, the largely varying 18S rRNA gene copy numbers (GCN) among marine protists (ranging from tens to thousands) 
is one of the most important biological biases for species quantification. In this work, we present a gene copy number correction 
factor (CF) for four marine planktonic groups: Bacillariophyta, Dinoflagellata, Ciliophora miscellaneous and flagellated cells. On 
the basis of the theoretical assumption that ‘1 read’ is equivalent to ‘1 GCN’, we used the GCN median values per plankton group 
to calculate the corrected cell number and biomass relative abundances. The species-specific absolute GCN per cell were obtained 
from various studies published in the literature. We contributed to the development of a species-specific 18S rRNA GCN database 
proposed by previous authors. To assess the efficiency of the correction factor we compared the metabarcoding, morphological and 
corrected relative abundances (in cell number and biomass) of 15 surface water samples collected in the Belgian Coastal Zone. 
Results showed that the application of the correction factor over metabarcoding results enables us to significantly improve the 
estimates of cell abundances for Dinoflagellata, Ciliophora and flagellated cells, but not for Bacillariophyta. This is likely to due 
to large biovolume plasticity in diatoms not corresponding to genome size and gene copy numbers. C-biomass relative abundance 
estimations directly from amplicon reads were only improved for Dinoflagellata and Ciliophora. The method is still facing biases 
related to the low number of species GCN assessed. Nevertheless, the increase of species in the GCN database may lead to the 
refinement of the proposed correction factor.
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Introduction
During the last decades, unicellular eukaryotic plankton 
has been used as an indicator of ecosystem change due 
to its rapid response to environmental variations (e.g. 
Pawlowski et al. 2016). Monitoring programs have usu-

ally relied on microscopy, which is time-consuming and 
requires high taxonomic skills (Stern et al. 2018). While 
microscopy allows the identification based on morpholo-
gy (Edler and Elbrächter 2010) as well as the enumeration 
and carbon biomass (C-biomass) estimation (Menden 
Deuer and Lessard 2000) of microorganisms (usual-
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ly >20 µm), molecular approaches such as High Through-
put Sequencing (HTS) have a high potential for detailed 
species monitoring (Ebenezer et al. 2012; de Vargas et al. 
2015; Stern et al. 2018), capturing the entire size-range of 
the protistan community including nano- and picoplank-
tonic components (Elferink et al. 2017, 2020; Bruhn et al. 
2021). Deoxyribonucleic acid (DNA) metabarcoding has 
proven to be a powerful and sensitive tool for large-scale 
biodiversity surveys, allowing comparison of studies 
rooted in taxonomy (Chain et al. 2016). Although consid-
ered as an attractive approach to assess protist diversity 
in nature (Medlin and Kooistra 2010; Santoferrara et al. 
2020) it is subject to several distinct biases (technical and 
biological) that influence sequence read counts and esti-
mated diversity (Thomas et al. 2016). These uncertainties 
limit to some degree its application for biomonitoring.

The small ribosomal subunit (SSU) 18S rRNA gene 
is the most widely used marker for the detection and 
classification of aquatic eukaryotic protists. The different 
gene regions such as V9 (de Vargas et al. 2015) or 
the more lately used V4 (Piredda et al. 2017; Armeli 
Minicante et al. 2019) offer conserved primer binding 
sites that are used to amplify broad taxonomic groups 
via polymerase chain reaction (PCR), providing some 
degree of taxonomic resolution. In order to understand 
the microbial diversity, species succession or dynamics, 
several ecological studies based on metabarcoding 
datasets (Massana et al. 2015; Armeli Minicante et 
al. 2019; Gran-Stadniczeñko et al. 2019; Käse et al. 
2020; Bruhn et al. 2021; Lapeyra Martin et al. 2022) 
have commonly relied on the acquisition of organismal 
abundances directly from the number of DNA sequences 
(i.e. reads). These reads are later assigned to Operational 
Taxonomic Units (OTUs) or Amplicon Sequences 
Variants (ASVs), from which relative abundances of the 
community are ultimately calculated.

Quantification of marine protists based on ASV/OTU 
relative abundances has been largely discussed in the lit-
erature (Weisse et al. 2016; Vasselon et al. 2018; Santo-
ferrara 2019; Käse et al. 2020). There exist several inher-
ent technical issues occurring due to sample preservation 
(Mäki et al. 2017), DNA extraction (Van der Loos and Ni-
jland 2021), primer choice and specificity (Elbrecht and 
Leese 2015; Lapeyra Martin et al. 2022; Latz et al. 2022) 
and ultimately PCR, which under- or overestimate dif-
ferent groups (Wintzingerode et al. 1997; Gonzalez et al. 
2012; Latz et al. 2022). Besides the technical aspect, var-
ious authors agree that the major source of bias avoiding 
an accurate metabarcoding quantification is the 18S SSU 
rRNA gene copy number (GCN) variation within species, 
genera and plankton groups (Not et al. 2009; Mäki et al. 
2017; Vasselon et al. 2018; Saad et al. 2020). Deviation 
in GCN between species or even individuals is well doc-
umented (Zhu et al. 2005; Gong et al. 2013) and can be 
substantial, affecting the proportion of reads found for 
each species present in complex environmental assem-
blages. This often leads to misinterpretation of relative 
abundances when comparing with proportions revealed 
by microscopic counts (Santi et al. 2021).

In the case of prokaryotes, phylogeny-based approach-
es have been applied to estimate 16S rRNA GCN and 
potentially correct this bias (Kembel et al. 2012; Angly 
et al. 2014). In the case of eukaryotes, a limited number 
of genomes have been sequenced and few species-spe-
cific 18S rRNA GCN have been assessed (Yarimizu et 
al. 2021), making the same corrective approach an ardu-
ous task. Moreover, it has been observed that 18S rRNA 
GCN, cellular biovolume and carbon content relationship 
strongly vary between different taxonomic groups and 
species (Lee et al. 2009; Galluzzi, Penna 2013; Mäki et 
al. 2017; Gong and Marchetti 2019). Particularly, differ-
ences have been already demonstrated for dinoflagellates 
(LaJeunesse et al. 2005; Galluzzi and Penna 2013; Toebe 
et al. 2013; Yarimizu et al. 2021), diatoms (Connolly et 
al. 2008; Godhe et al. 2008), ciliates (Gong et al. 2013) 
and other flagellates (Zhu et al. 2005; Read et al. 2013). 
Rigorous comparisons of morphological (microscopy) 
and metabarcoding methodologies exist in the litera-
ture for eukaryotic plankton in freshwater environments 
(Medinger et al. 2010; Groendahl et al. 2017), estuarine 
ones (Abad et al. 2016), the Mediterranean Sea (Piredda 
et al. 2017; Santi et al. 2021), the North Sea (Käse et al. 
2020) or the Skagerrak basin (Gran-Stadniczeñko et al. 
2019). These studies highlighted the incongruences of 
the results of both approaches (microscopy and metabar-
coding), that might be occurring due to 18S rRNA GCN 
differences among taxa, as for example Alveolate (e.g. 
ciliate and dinoflagellate) sequences usually constitute 
the largest fraction of sequence reads.

Some approaches have been lately developed to assess 
and/or mitigate quantification bias in metabarcoding: 
making use of control material in fish (Thomas et al. 2016) 
or plants (Matesanz et al. 2019), reducing amplification 
bias in arthropods (Krehenwinkel et al. 2017) and zoo-
plankton (Ershova et al. 2021), or use of biovolume for 
some protistan plankton taxa such as diatoms (Vasselon 
et al. 2018). However, since we still lack approaches that 
address the inherent issue of quantitative metabarcoding 
for the entire eukaryotic plankton community, the use of 
relative abundances directly obtained from the number of 
reads in marine protistan plankton assemblages collected 
from environmental samples is yet relatively common.

Therefore, assuming that the variation in relative abun-
dances of different organisms and/or taxa can be partly 
attributed to the natural inherent differences in 18S rRNA 
GCN, the present study attempts to investigate the use of 
a GCN correction factor (GCN-CF) to mitigate the quan-
titative bias (cell number and biomass) in DNA metabar-
coding approaches applied to marine protistan plankton 
surveys. We therefore compared the quantitative discrep-
ancy between microscopic and molecular methods aim-
ing to answer the following question: can we improve the 
estimations of cell and biomass relative abundances from 
metabarcoding reads if we consider the taxa-specific 18S 
rRNA GCN?

In order to answer this question (1) we compiled ma-
rine unicellular eukaryotic plankton data available in 
published literature of 18S rRNA GCN, (2) we created 
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a taxa-specific GCN-CF from the GCN database (GCN 
database) and (3) we applied the GCN-CF to the me-
tabarcodes of 15 environmental DNA (eDNA) samples 
collected in the Belgian Coastal Zone (BCZ). Correct-
ed metabarcodes were compared to their corresponding 
microscopical counts and biomass estimations in rela-
tive abundances.

Materials and methods

We focused on four single cell marine eukaryotic plank-
ton groups (protists) commonly determined and enumer-
ated under the microscope (Edler and Elbrächter 2010; 
Manoylov 2014): diatoms, dinoflagellates, ciliates and 
various flagellated cells. Their corresponding taxonomic 
ranks according to the National Center for Biotechnology 
Information (NCBI) taxonomy are: Bacillariophyta (Stra-
menopiles), Dinoflagellata (Alveolata), Ciliophora (Al-
veolata). The fourth group used in this study, flagellated 
cells, is a non-taxonomic term that groups a wide range 
of microbial eukaryotic cells that have flagella and are 
not diatoms, dinoflagellates, ciliates and are usually <20 
µm in size. In the present study, organisms classed within 
flagellated cells may correspond to species belonging to 
the following listed groups: Bigyra, Opalozoa, Cercozoa, 
Chlorophyta, Cryptophyta, Haptophyta, Hyphochytrio-
mycota, Labyrinthulomycetes, Ochrophyta, Oomycota, 
Rhodophyta, Foraminifera, Radiolaria, and Apicomplexa.

Gene copy number & correction factor

We built up a species-specific 18S rRNA GCN database 
for marine protists that contained species specific GCN 
per cell values, along with the estimated cellular bio-
volume and carbon content (C-content), which were ac-
quired from several studies published in the literature and 
are listed in Suppl. material 1. The absolute GCN per cell 
in the original research articles were achieved through 
different methodological approaches such as qPCR (Zhu 
et al. 2005), real-time PCR (Godhe et al. 2008), sin-
gle-celled qPCR (Gong et al. 2013), bioinformatics pipe-
line (Gong, Marchetti 2019) and single cell digital PCR 
(Yarimizu et al. 2021). We assumed that the different 18S 
rRNA GCNs listed in the GCN database (Suppl. material  
1) are the absolute 18S rDNA gene copy numbers per cell 
and that each GCN is read once during one metabarcod-
ing sequencing event, and therefore that ‘1 read count’ is 
equivalent to ‘1 GCN’.

From the GCN database, we calculated the mean, me-
dian, and standard deviations GCN per cell for each of 
the four established groups: Bacillariophyta, Dinoflagel-
lata, Ciliophora and flagellated cells. Median GCN cell-1 
values were used due to data limitation and presence of 
outliers. These values per group were used as key com-
ponents for the correction factors and development of the 
mathematical equations.

The equation (i) estimates the corrected metabarcoding 
cell relative abundances (MTB_CFcell) for each defined 

plankton group (g) within a single sample. Metabarcod-
ing number of reads (expressed in GCN) are divided by 
the corresponding plankton group CF (GCN cell-1), and 
the following division by the total sum of the four groups 
estimates ultimately the proportional contribution to the 
community (%).

The equation (ii) estimates the cellular GCN:C-con-
tent ratios (CC ratio) for each plankton group (values 
reported in Table 1). Median cellular C-content values 
(pg C cell-1) were calculated from the microscopy (MCP) 
dataset for each plankton group, in order to be consistent 
with cellular C-content of the species found in the area 
(BCZ). Finally, the equation (iii) estimates the corrected 
C-biomass relative abundances (MTB-CFbio).

g = (Bacillariophyta, Dinoflagellata, Ciliophora, 
Flagellated cells)

MTB_CFcellg[%]

MTBg[GCN]

CFg[GCN cell 1]

g

MTBg[GCN]

CFg[GCN cell 1]

	 (i)

CC r tiog[GCN pg C 1]
CFg[GCN cell 1]

C contentg[pg C cell 1]
	 (ii)

MTB_CFbiog[%]

MTBg[GCN]

CC r tiog [GCN pg C 1]

g

MTBg[GCN]

CC r tiog [GCN pg C 1]

	 (iii)

The relative abundances of the uncorrected metabar-
coding results and the corrected ones from equation (i) 
and (iii), MTB_CFcell and MTB_CFbio respectively, 
were directly compared to MCP. This comparison was 
performed for the fifteen environmental samples.

Field sampling

Seawater samples were collected at 3 m depth using 4 
L Niskin bottles connected to a CTD sensor (Sea-bird 
SBE25). The monitoring in the Belgian Coastal Zone 
(Lapeyra Martin et al. 2022) took place from March 2018 
to June 2019 (see Suppl. material 4: Table S2) aboard 
the RV Simon Stevin (Vlaams Instituut voor de Zee) at 
the St. 330 (51°26.05'N, 02°48.50'E). Both in 2018 and 
2019, throughout the spring-summer months, one extra 
monthly cruise was undertaken and samples were collect-
ed to closely follow the evolution of the phytoplanktonic 
blooms that occur during this time period in Belgian wa-
ters (Gypens et al. 2007).

Metabarcoding

The DNA samples for the study of the protistan commu-
nity were collected vacuum filtering 500–800 mL of wa-
ter (from Niskin) through 0.22 µm polycarbonate filters 
(47 mm) and storing the samples immediately at -20 °C. 
Total DNA was extracted from filters using NucleoSpin 
Soil extraction Kit (Macherey-Nagel, Düren, Germany) 
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following manufacturer’s protocol. For a maximum effi-
ciency of the extraction from the filters, a sample lysis step 
was added using 10 mL cryotubes (using a high velocity 
bead beater for 10 min). Up to three filters were pooled 
and used for DNA extraction when no sufficient biomass 
was found on a single filter. Standard polymerase chain 
reactions (PCR) were performed to amplify the universal 
eukaryote SSU 18S rRNA gene. Primers TAReuk454F-
WD1 (5′-CCAGCASCYGCGGTAATTCC-3′), TAReu-
kREV3 (5′-ACTTTCGTTCTTGATYRA-3′) were used 
to target the V4 region of the 18S rRNA gene (Stoeck et 
al. 2010). PCR reactions performed had a total volume 
of 25 μL, containing 2.5 μL of microbial DNA (5 ng µL-

1), 5 μL of both amplicon forward and reverse primers 
(1 µM) and 12.5 μL of high-fidelity polymerase HotStart 
ReadyMix (Kapa Biosystems). Plates were sealed and 
the following PCR-program was run in a thermal cycler: 
initial denaturation at 95 °C for 3 min, followed by 25 
cycles of 95 °C for 30 s, annealing at 55 °C for 30 s; 
extension at 72 °C for 30 s final extension at 72 °C for 
5 min. All PCR products (480 bp, ~383 bp + 97 bases of 
primers) were verified on a 1.5% agarose gel. The fol-
lowing library preparation of 18S ribosomal RNA gene 
amplicons was performed: PCR clean-up 1, index PCR, 
PCR clean-up 2, library quantification, normalization and 
pooling following the 16S Metagenomic Sequencing Li-
brary Preparation guide (Illumina 2013). Library denatur-
ing and sample loading to the Illumina MiSeq system was 
performed to perform a 300 bp paired-end sequencing us-
ing V2 chemistry.

The reads were denoised and merged with DADA2, 
v1.16. (Callahan et al. 2016) using default cut-off param-
eters and annotation reads were subsequently classified 
with assignTaxonomy, the DADA2 implementation of 
the naive Bayesian classifier method described in Wang 
et al. (2007), against the Protist Ribosomal Reference Da-
tabase PR2 v4.12.0 (Guillou et al. 2013). As this study is 
focusing on the protists, all reads assigned to Metazoans 
were excluded from the processed ASV-tables. Prepara-
tion of the ASV-tables was done in R v4.0 (R Core Team 
2018) and assigned ASV taxonomy was used as proxy to 
classify the number of reads into described groups. The 
number of final sequencing reads ranged between 23,299 
and 52,256 per sample. Subsampling to equal read num-
ber was done with the function rarefy from the ’vegan’ 
package v2.0-10 (Oksanen et al. 2013). The metabarcod-
ing dataset used for this study is available in Suppl. ma-
terial 2 and can be found in online repositories: at DDBJ/
EMBL/GenBank under the accession KFLC00000000. 
The raw data corresponding to the raw fastq files can be 
found on the online repository ZENODO, with the acces-
sion number: 10.5281/zenodo.6827112.

Microscopy, biovolume and biomass

Seawater samples from St. 330 (100 mL) were fixed 
with Lugol’s solution (1% final concentration), stored in 
the dark until microscope analysis using Utermöhl-type 

sedimentation (Edler and Elbrächter 2010). Cell counting 
and taxonomic identification down to genus/species level 
were performed under inverted light microscopy (LM) 
for all samples. If cells could not be identified down to 
the species or genus level using LM, higher taxonomic 
levels were used.

The cellular C-biomass was calculated based on bio-
metric factors determined for each species and cell den-
sity. Mean species-specific biometric values were ob-
tained from published data (Olenina et al. 2006; Nohe 
et al. 2018) and converted to biovolumes. Calculation 
of biomass was performed using carbon to volume re-
lationships for diatoms, dinoflagellates and other protist 
plankton found in Menden-Deuer and Lessard (2000). 
In the case of ciliates, cell sizes were converted into cell 
volumes using geometric formulae from Peuto-Moreau 
(1991). Biovolumes were converted using the conver-
sion factor 0.14 pg C µm3 according to Putt and Stoecker 
(1989). For Phaeocytis globosa, a characteristic bloom 
forming species of the BCZ, three different life stages 
were identified and distinguished: flagellate, free-living 
and colonial. Biovolumes and cellular carbon content 
were estimated following species-specific carbon content 
data (Rousseau et al. 1990).

For each sample, proportional cell and C-biomass 
abundances from the microscopy dataset were calculated 
(percentage of the total cells and C-biomass per defined 
plankton group) and directly compared to the correct-
ed and non-corrected metabarcoding data (i.e., relative 
abundance of each taxonomic group, estimated as the 
percentage of sequencing reads assigned to a taxonomic 
group compared to the total reads per sample). The mi-
croscopy results dataset used for this study is available in 
Suppl. material 3.

Statistical analysis

All statistical analyses, data processing and plotting were 
performed using R version 4.0.2 (R Core Team 2018) 
and ggplot2 (Wickham, 2011) was used for visualization. 
Kruskal-Wallis and Wilcoxon tests were used to check 
differences in 18S rRNA GCN and C-biomass among 
different taxonomic groups or methods. The significance 
level was set at p < 0.05. Log-log plot was used to reflect 
the relationship over many orders of magnitude between 
GCN and biomass of marine protists. To check for dif-
ferences in the community composition produced by the 
CF and assess its effects, we applied and compared gen-
eralized linear modeling based on beta distribution using 
the beta regression package betareg v3.1-4 (Cribari-Ne-
to and Zeileis 2010). Two beta regression analyses were 
performed to assess the efficiency of the CF to improve 
cell relative abundances. The first one included the pro-
portions of microscopy cell abundances and metabarcod-
ing reads. The second model, instead of metabarcoding 
reads percentages, included the corrected results; after the 
application of the correction factor. As our dataset also 
assumes the “zero” values (referring to 0% of relative 
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abundance), thus a useful transformation in practice was 
used for the models: (y · (n − 1) + 0.5)/n where n is the 
sample size (Smithson and Verkuilen 2006). The percent-
age of relative abundances of the eukaryotic groups were 
the response variable (y) and were tested against the ex-
planatory variables (x), methods used (i.e.: MCP, MTB, 
MTB-CFcells, MTB-CFbio), and interaction of the meth-
odology with each of the examined taxonomic groups.

Results

GCN database, metabarcoding and microscopy

The 18S rRNA GCN database comprised a total of 65 
species’ absolute GCNs per cell, biovolumes and esti-
mated biomasses (see Suppl. material 1, 3). Species were 
classified in four taxonomic groups: Bacillariophyta 
(Stramenopiles), Dinoflagellata (Alveolata), Ciliophora 
(Alveolata) and flagellated cells. GCN data collected and 
sorted by taxonomic group are visualized in Fig. 1 and 
values reported in Table 1. Ciliophora showed the highest 
GCN cell-1 followed by Dinoflagellata and Bacillariophy-
ta, and flagellated cells being the group with the lowest 
GCN per cell on average by several orders of magnitude. 
Indeed, GCN per taxum showed significant differences 
among all taxonomic groups (Kruskal-Wallis, p < 0.01).

Regarding the cellular carbon content, a significant 
positive correlation (R2 = 0.79; p < 0.001) was found in 
the GCN database dataset between the gene copy numbers 
and the estimated C-biomass of the single cell eukaryotes. 
When the same analysis was performed taking into con-
sideration the taxonomic groups established (Fig.  1B), 

all groups showed a significant positive relationship with 
Ciliophora being the least correlated one (R2  = 0.47, 
p = 0.014) (See Suppl. material 1 for references).

The comparison of the data produced by the three 
datasets used in this study, sorted by taxonomic groups, is 
shown in  Suppl. material 4: Table S1. The comparison of 
the number of species per taxum included in metabarcoding 
(n = 1884) outnumbered microscopy (n = 165) and 
GCN database contained the smallest number of species 
(n = 65). Suppl. material 4: Fig. S1 displays a comparison 
of cellular C-content estimates between microscopy and 
GCN database. No significant differences were found for 
Bacillariophyta cellular C-content between both datasets. 
In fact, Bacillariophyta median cellular C-biomass was 
found to be almost equal in microscopy dataset and 
GCN database (37.6 and 37.9 pg C.cell-1 respectively). 
Regarding flagellated cells, even though the median and 
mean C-contents per cell were higher in GCN database, 
there was no significant difference found (Wilcoxon, 
p  >  0.05). Ciliophora showed the highest difference of 
all groups both in median and mean biomass values. 

Table 1. Plankton group specific correction factors (expressed 
in gene copy number per cell) cellular gene copy number (GCN) 
and GCN:C-content ratios (CC ratio) obtained with the applica-
tion of equation (ii) for the Belgian Coastal Zone microscopy 
sample set.

Plankton group Correction Factor 
(GCN cell-1)

CC ratios 
(GCN:pg C )

Bacillariophyta (Stramenopiles) 166 4.41
Ciliophora (Alveolata) 71710 3.26
Dinoflagellata (Alveolata) 4919 27.17
Flagellated cells 5.23 0.94

Figure 1. (A) 18S rRNA gene copy number per cell belonging to the major single celled eukaryotic plankton groups: Bacillariophy-
ta (Stramenopiles), Dinoflagellata (Alveolata), Ciliophora (Alveolata) and flagellated cells. See Supplementary Table 1 for the me-
dian, mean and standard deviation values. (B) Log-log correlation between the number of 18S rRNA copies and cellular C-content 
(pgC cell-1). The linear regressions were significant (p < 0.05) for all groups. Data were obtained through different methodological 
approaches: qPCR (Zhu et al. 2005), real-time PCR (Godhe et al. 2008), single-celled qPCR (Gong et al. 2013), bioinformatics 
pipeline (Gong, Marchetti 2019) and single cell digital PCR (Yarimizu et al. 2021).
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Dinoflagellata C-biomass per cell showed significant 
differences among microscopy and GCN database 
(Wilcoxon, p < 0.001). In Table 1, cellular 18S rRNA GCN 
values are shown (displayed in Fig. 1A). The difference 
between the median and mean in GCN values was noted 
(emphasized specially in Bacillariophyta), where means 
were dominated by the outliers rather than the typical 
values. The median GCN values per taxum were used in 
this study as key components for the application of CF.

Cell relative abundances

The cell relative abundances for the described plankton 
groups belonging to the 15 samples set from the BCZ 
are displayed in Fig. 2. Relative abundances refer to the 
evenness of distribution among defined groups in the 
community. Whereas the relative abundances in micros-
copy (cells) throughout all samples were dominated by 
the group flagellated cells, in metabarcoding proportions 

(reads) Dinoflagellata was the most abundant group 
(avg. = 51.4 ± 19.1%).

Bacillariophyta relative abundances from microscopy 
ranged between 1.4 – 61.9%, with an average (avg.) of 
16.3 ± 14.7% throughout the total set (Fig. 2A). Corre-
sponding metabarcoding proportions presented similar 
values with a mean 14.8 ± 7.8%, but with a maximum 
of 30.15% (Sample 15). Sample 3 showed the highest 
difference among microscopy and metabarcoding rela-
tive abundances (produced by blooming diatom Minuto-
cellus scriptus, see Suppl. material 2). It was noted that 
the relative abundances between metabarcoding and mi-
croscopy results did not follow the same trend between 
samples. Dinoflagellata microscopy values were gener-
ally low ranging 0.08 – 2.8% (Fig. 2B), metabarcoding 
relative abundances were significantly higher varying 
between 77.2% (Sample 3) and 19.0% (Sample 9); reach-
ing values higher than 50% in 9 out of 15 samples. The 
average of all samples for Dinoflagellata was the highest 

Figure 2. Comparison between relative abundances (%) of the cell counts from microscopy (MCP; blue), reads from DNA metabar-
coding (MTB; yellow) and corrected read abundance percentages (MTB_CFcell; green) per sample. Right panels: box plots summa-
rizing the comparison percentages of cell counts (MCP), metabarcoding reads abundance (MTB) and the corrected (MTB_CFcell) 
out of the 15 marine water samples per plankton group: (A) Bacillariophyta (Stramenopiles), (C) Dinoflagellata, (B) Ciliophora 
and (D) flagellated cells. The vertical line inside the box plots represents the median, the top and the bottom hinges correspond to 
the interquartile range, and the whiskers show the minimum and maximum non-outlier values. Note the scale difference between 
plankton groups.



Metabarcoding and Metagenomics 6: e85794

https://mbmg.pensoft.net

251

among all groups and attained up to 51.4%. The case 
of the other Alveolates group studied, Ciliophora, was 
similar (Fig. 2C) with averaged microscopy values less 
than 1% and microscopy varying between 28.4% (Sam-
ple 12) and 0.53% (Sample 5). The group of flagellated 
cells was formed by organisms from different taxonom-
ic groups generally < 20 µm. Despite the limitations for 
the adequate characterization of small organisms by the 
microscopy methodology, flagellated cells percentag-
es (Fig. 2D) reached the highest values among the four 
groups ranging from 35.6% (Sample 1) to 98.4% (Sample 
9) (avg. = 82.7 ± 15.4%). Microscopy values were higher 
than metabarcoding for all samples, metabarcoding val-
ues ranging between 5.6 – 47.9% (avg. = 23.8 ± 12.9%).

When the correction factor was implemented, the es-
timation of relative abundances decreased considerably 
(avg. = 2.7 ± 2.6%) for Bacillariophyta (Fig. 2A) in all 
samples. The application of the CF for Dinoflagellata, 
which strongly dominated the community structure in 
the metabarcoding dataset (Fig. 2B), was able to emulate 
more accurately the microscopy proportions decreasing 
the mean to ~ 0.4% (range = 0.04 – 1.2%). The relative 
abundance of metabarcoding reads attributed to Cilio-
phora was considerably higher than percentages obtained 

through MCP. Corrected values’ average was found to 
be 0.03 ± 0.02%, getting much closer to the proportions 
found in MCP. When the CF was applied, the values for 
flagellated cells strongly approached the microscopy cell 
proportion values (avg. = 96.8 ± 2.8%).

Distributions of the two beta regression analyses, per-
formed to assess the efficiency of the CF to improve cell 
relative abundances, were significant (p < 0.01) and de-
tailed results are shown in Suppl. material 4: Table S3. 
According to the beta regression analysis containing the 
corrected data, GCN-CFcell resulted the best fit out of the 
two models with a higher R2 and Phi precision parameter 
(R2 = 0.84 to 0.96 and Phi (φ) = 14.96 to 33.23; displayed 
in Suppl. material 4: Fig. S2). The models significantly 
explained the variance in a different way for each phy-
lum; this could be observed as well when examining the 
relative abundance estimates for each group in Fig. 2.

C-biomass relative abundances

Equation (ii) was applied to calculate the cellular 
GCN:C-content ratios for the species present in the mi-
croscopy dataset of the BCZ and are reported in Table 1. 
The ratios varied from 0.94 for flagellated cells to 27.17 

Figure 3. Boxplots summarizing the comparison of the 15 marine water samples biomass proportions from inverted microsco-
py (MCP), with DNA metabarcoding number of reads (MTB) and the corrected C-estimation values from metabarcoding reads 
(MTB_CFbio) using median cellular C-content values per taxum from microscopy dataset. (A) Bacillariophyta, (B) Dinoflagellata, 
(C) Ciliophora, and (D) flagellated cells. The vertical line inside the box plots represents the median, the top and the bottom hinges 
correspond to the interquartile range, and the whiskers show the minimum and maximum non-outlier values.
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for Dinoflagellata. Bacillariophyta and Ciliophora dis-
played similar values both lower than 5 GCN:pg C.

The comparison of the biomass estimates (in relative 
abundances) from microscopy together with metabarcod-
ing values and the average effect of the correction ap-
proach (MTB-CFbio) are displayed in Fig. 3. Sample per 
sample comparison for the entire sample set is shown in 
Suppl. material 4: Fig. S3. Whereas the cell relative abun-
dances were dominated by the group flagellated cells (Fig. 
3D), the C-biomass in microscopy was generally domi-
nated by diatoms (Bacillariophyta, avg. = 46.8 ± 24%). 
They were followed by flagellated cells (ranged from 3 
– 80.9%; avg. = 33 ± 25.2%) led by the bloom forming 
species Phaeocystis globosa, outweighing diatoms occa-
sionally in specific samples (Samples 1,10,11,12). Dino-
flagellata biomass outweighed the other groups in 3 out of 
15 samples, Noctiluca scintillans being the main constit-
uent of these samples (i.e.: Samples 2, 5; max. = 71.9%) 
with an average biomass of 19.7 ± 22.8%. Ciliate biomass 
estimates throughout all the samples did not attain more 
than 2% and was on average 0.42 ± 0.68%.

Equation (iii) was applied using CC ratios to estimate 
C-biomass proportions from metabarcoding reads (MTB_
CFbio), which included median cellular C-content per tax-
um values from the microscopy dataset. Results showed that 
Bacillariophyta relative biomass corrections were underes-
timated from 42.3 ± 23.9% to 11.1 ± 9.2% (median) when 
compared to microscopy (Fig. 3A). Dinoflagellata estimat-
ed abundances were enhanced (Fig. 3B) from 10.4 ± 22.8% 
in metabarcoding to 5.6 ± 6.0% in MTB-CFbio, however, 
it was found that samples characterized by monospecific 
blooms (i.e: Samples 2, 13 and 15) were not adequately cor-
rected (Suppl. material 4: Fig. S3). MTB-CFbio estimations 
of Ciliophora were similar to metabarcoding biomass pro-
portions (MTB = 10.0 ± 8.9%; microscopy = 8.4 ± 7.6%). 
Both metabarcoding and MTB-CFbio strongly overestimat-
ed Ciliophora biomass compared to microscopy (Fig. 3C). 
Similarly, flagellated cells overall biomass was strongly 
overestimated by the application of the correction factor 
(Fig. 3D), from 29.9 ± 25.2% to 72.3 ± 12.6%.

The two beta regression analyses were performed to 
assess the effect of the correction factor to improve the 
C-biomass relative abundances. The first one compared 
microscopy and MTB. The second model compared 
MTB-CFbio using microscopy taxa specific median 
C-biomass dataset values (Suppl. material 3). Distribu-
tions of the two models were significant (p < 0.01) and 
detailed results are shown in Suppl. material 4: Table S4. 
When comparing the results of the beta regression anal-
yses performed for microscopy proportions (displayed in 
Suppl. material 4: Fig. S3), and MTB-CFbio, MTB-CFbio 
resulted in the best fit of the beta regression model with 
the highest R2 and Phi precision parameter (R2 = 0.70 and 
Phi (φ) = 8.8), against the first model (R2 = 059 and Phi 
(φ) = 7.8). The models significantly explained the vari-
ance in a different way for each phylum; this could be 
observed as well when examining the relative abundance 
estimates for each group in Suppl. material 4: Fig. S4.

Discussion

In metabarcoding, previous attempts to control biases have 
primarily focused on correcting single technical biases 
such as fixation of the sample, DNA-extraction, group-spe-
cific primer choice, or PCR (Zarzoso-Lacoste et al. 2013; 
Van der Loos and Nijland 2021). As regards the correction 
factors implemented to improve metabarcoding quantifi-
cation, various approaches have been developed targeting 
both micro- and macro- organisms. Thomas et al. (2016) 
tested the feasibility of a CF using control materials of tar-
get fish that accounted for multiple sources of bias simul-
taneously, and Vivien et al. (2016) exploited the consistent 
variations across samples between species counts sequence 
abundances to create a CF in aquatic oligochaetes. For pro-
karyotes, Angly et al. (2014) used phylogenetic differences 
from bacteria and archaea to develop a bioinformatic tool 
allowing a rapid correction of GCN in microbial surveys, 
resulting in improved estimates of abundances.

However, to the authors’ knowledge, the only CF ap-
plication in a plankton metabarcoding (freshwater) sur-
vey was carried out by Vasselon et al. (2018), and it was 
focused only on diatoms (Bacillariophyta). In that study, 
the diatom GCN and biovolume correlation was used to 
create a CF, which, once applied to environmental sam-
ples, served to improve the diatom quantification. Our 
study addressed the biological bias of 18S rRNA GCNs 
by accounting the taxa-specific differences in GCN. The 
correction factors were applied in three major unicellular 
eukaryotic plankton groups and for an overarching flagel-
late group over a 15 sample set of a marine environmental 
survey. However, the sampling design used to test the CF 
comprised a time-series, and therefore, the transferabili-
ty of the proposed CF to other geographical areas is still 
limited. This is because the development of the CF is con-
strained to one environmental context and its correspon-
dent community composition.

In addition, as previously proposed by various authors 
(Stern et al. 2018; Saad et al. 2020; Yarimizu et al. 2021), 
we contributed to the start of the first protistan 18S rRNA 
GCN database, generating copy number profiles for ma-
rine protists.

Effectiveness of GCN-CF

Cell number

Semi quantification by metabarcoding across groups has 
proven to be problematic in eukaryotes larger than 2 μm 
(Santoferrara et al. 2019) and good correlations between 
the proportion of reads and absolute species abundances 
in published literature are rare (Aylagas et al. 2018). To 
date, unfortunately, there is still little consensus on the 
combination of the methods for both identifying and mea-
suring abundance of microbial populations.

Our results regarding the contrast of the two methods 
— microscopy (cells) and metabarcoding (sequencing 
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reads) — over the set of fifteen environmental samples 
from the Belgian Coastal Zone (Fig. 2) displayed dif-
ferent types of mismatches in the four groups studied: 
Bacillariophyta proportions between microscopy and 
metabarcoding were not significantly different (Fig. 2A). 
Conversely, flagellated cells were underrepresented in 
metabarcoding against microscopical observations (Fig. 
2D). In the case of Alveolates (Ciliophora and Dinofla-
gellata), a strong overestimation of the relative abundanc-
es was observed in our environmental samples when se-
quence-based methodologies were used (Fig. 2B,C), but 
this phenomenon is well observed in the field (Elferink et 
al. 2017, 2020; Bruhn et al. 2021; Santi et al. 2021).

When the CF was applied, cell relative abundances 
were strongly improved in both alveolate groups and flag-
ellated cells (Fig. 2). In fact, the hypothesis that one cell 
with many gene copies gives many reads during sequenc-
ing is addressed by applying the correction factor. How-
ever, for Bacillariophyta the application CF worsened the 
estimations, underestimating them. The factors explain-
ing both microscopy and metabarcoding similarities and 
the CF effect worsening in Bacillariophyta may lie be-
yond the differences in GCNs (Fig. 1). In fact, Bacillario-
phyta biovolume range is the largest one of the four taxo-
nomic groups studied (from 101 to 109 μm3) (Vasselon et 
al. 2018), 100 times greater than for dinoflagellates (Har-
rison et al. 2015). Given the fact that the 18S rRNA GCN 
in diatoms has been significantly correlated to biovolume 
(Godhe et al. 2008), this huge natural variability makes 
the development and application of a CF challenging for 
Bacillariophyta. Thus, it might be necessary to apply cor-
rection factors at lower taxonomic levels in groups such 
as diatoms with an important morphologic diversity (i.e.: 
Vasselon et al. 2018).

This variability was not so obvious in the other groups 
studied. In accordance with the GCN database results 
(Fig. 1), alveolates dominated the metabarcoding dataset 
due to higher rRNA copy numbers than other groups. This 
has been already shown in previous studies (Massana et 
al. 2015; Käse et al. 2020; Lapeyra Martin et al. 2022). 
Flagellated cells underrepresentation in metabarcoding 
dataset is best explained by the low GCN per cell (Table 
1, Fig.1). Dinoflagellata discrepancies among morpho-
logical and molecular relative abundances might be also 
affected by the lack of resolution of microscopical ap-
proaches to identify < 20 μm small dinoflagellates (Käse 
et al. 2020). Especially for ciliates, the observed discrep-
ancy between microscopy and metabarcoding might be 
produced by the preservation method used.

C-Biomass

There is a realization of the fact that number of reads 
is not generally well suited to determine absolute 
abundances (Medinger et al. 2010; Mäki et al. 2017). 
However, a meta-analysis of 22 metabarcoding stud-
ies targeting a wide variety of organisms found a weak 
quantitative relationship between carbon biomass and 

number of sequence reads produced (Lamb et al. 2019). 
The GCN database results displayed in Fig. 1B showed 
a strong positive correlation between GCN and cellular 
C-content for the four defined groups. This is consistent 
with Godhe et al. (2008) and Zhu et al. (2005) studies, 
that showed a significant correlation of cell length and 
biovolume in some marine protist taxa (Dinoflagellata 
and Bacillariophyta).

As regards the entire marine plankton community, 
Santi et al. (2021) performed a comparison between 
the output of microscopy analysis (in relative biomass 
abundances) and DNA metabarcoding, by using the same 
grouping of organisms as the one used in this study. 
Their results revealed that alveolates (Dinoflagellata 
and Ciliophora) displayed differences in proportions 
between the two methods tested whereas Bacillariophyta 
results did not vary significantly. The group flagellated 
cells showed even higher inconsistency between the two 
methodologies. In contrast, our results in Fig. 3 (and 
Suppl. material 4: Fig. S3) showed significant differences 
in all studied groups but flagellated cells.

The application of the CF to estimate biomass using 
GCN:C-content ratios, which included GCN and median 
C-content per taxum from the microscopy dataset, only 
improved the biomass estimations in two out of the four 
groups studied: Dinoflagellata and Ciliophora. This might 
be happening due to dinoflagellates that showed the high-
est GCN:C-content ratio and therefore the application of 
the correction factor resulted in the biggest impact cor-
recting the relative abundance estimates.

The main weaknesses behind the use of GCN:C-bio-
mass ratios for estimating biomass relative abundances 
from metabarcoding reads presented in this study are cer-
tainly attributed to the limitation of the number of species 
representing each of the plankton groups described. Par-
ticularly in the case of Ciliophora. Since there was a sin-
gle ciliate species identified on our microscopy dataset, 
we were aware of the misrepresentation of the C-content 
values for the taxum Ciliophora. However, we decided 
to include this group in our biomass estimation analysis 
(application of equations ii and iii) in order to be able to 
perform the generalized linear modeling based on beta 
distribution for the entire community and assess the gen-
eral effect of the correction factor.

In addition, there are more sources of bias related to the 
method that should be considered. For example, the esti-
mations of C-content proportions in microscopy might be 
partially caused by errors in cell size measurements (and 
use of mean species-specific values), which are cubed 
to give volumes, and the effect of fixatives, which may 
cause shrinking or swelling of cells (Godhe et al. 2008). 
Additionally, there exists a difference between small cells 
of diatoms and dinoflagellates, which have a ∼60% high-
er carbon density (carbon per unit cell volume) than large 
cells (Harrison et al. 2015). These reasons add up inaccu-
racies that go far beyond the 18S rRNA GCN bias in me-
tabarcoding, and constrain the use of the correction factor 
to estimate relative biomass abundances.
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Limitations and future directions

DNA metabarcoding still has practical limitations (in-
herent to the techniques) that our GCN correction factor 
did not address. Some technical biases are more import-
ant than others, and amplification by PCR together with 
primer biases are one of the largest sources (Nichols et al. 
2018). Van der Loos and Nijland (2021) suggested that 
PCR-free methods such as direct sequencing of rRNA 
genes without amplification is the obvious solution. 
Nonetheless, PCR dependence on metabarcoding is not 
likely to disappear shortly.

Two major limitations were encountered as regards 
the GCN database and the application of the correction 
factors to estimate cell and C-biomass relative abun-
dances from metabarcoding reads. First, due to the fact 
that few marine protists’ 18S rRNA GCNs have been as-
sessed (Yarimizu et al. 2021) (see Suppl. material 1 and 
supplementary figure W3 in de Vargas et al. (2015)), we 
found ourselves with the necessity to use broad taxo-
nomic phyla or plankton groups (i.e. Bacillariophyta and 
flagellated cells). Along with this first limitation, it must 
be highlighted that high variances can be found among 
organisms of same phyla. Nevertheless, in order not to 
let the outliers control the mean values, medians were 
used among the available values. Intra-genomic polymor-
phisms were used as well, which is well documented in 
protists (Gong et al. 2013; Pawlowski et al. 2007). Apart 
from its possible negative effects for species identifica-
tion, it might play a role biasing the proposed CF and 
reducing its effectiveness.

Secondly, the GCN values used for the application of 
equations (i), (ii) and (iii) (see Table 1) were strictly as-
sociated with the specimens found in our GCN database, 
which might not necessarily coincide with a high taxo-
nomic level resolution with the species found in our sam-
pling area (BCZ). Accordingly, the representativeness of 
the defined plankton groups based on a limited number 
of species for each of the plankton group is constraining, 
likewise the replicability of the approach. Does this mean 
that many more gene copy number measurements of 
planktonic eukaryotes will enable the creation of an ideal 
correction factor? Fortunately, there is a considerable im-
provement in the measurement of 18S rRNA GCN thanks 
to the emergence of bioinformatic approaches that use 
whole genome next generation sequencing such as used 
by Gong and Marchetti (2019) or Sharma et al. (2021). 
Indeed, this tool presents promising advances — fast and 
cost-effective — to overcome the organismal limitations 
of the 18S rRNA GCN dataset. On this basis, the present-
ed approach may become more and more robust with the 
unceasing increment of marine protists’ GCN assessment. 
The GCN per cell information provided in Suppl. mate-
rial 1 proceed from different methodological approach-
es, and confidence values were rarely reported in these 
studies. We believe that for the future GCN quantification 
studies on protists it should be considered adding exacti-
tude parameters since some values might be more precise 
than others. Apart from this, it would also be interesting 

to consider comparing the different technical approach-
es and/or standardizing robust methods for future GCN 
quantification studies on protists. Nevertheless, other bio-
logical biases must also be pointed out due to the possible 
effect on the efficiency of the CF. For instance, GCN per 
cell will change according to the growth phase and phys-
iological status of the cell. Indeed, Gonzalez-de-Salceda 
and Garcia-Pichel (2021) found that the number of 18S 
RNA genes per cell follows an allometric power law of 
cell volume with an exponent of 2/3. In addition, infor-
mation regarding ribosome number variation would help 
to anticipate potential biases that can occur in environ-
mental 18S rRNA metabarcoding dataset from marine 
environments.

Traditionally, trend analyses and dynamics of autotro-
phic plankton biomass have been often based on chlo-
rophyll-a (Chl-a) pigment concentration by fluorimetry 
(Strickland, Parsons, 2002). To date, combination meth-
ods such as cell counting or quantitative PCR remain the 
only means to estimate absolute abundances (Weber and 
Pawlowski 2013; Canesi and Rynearson 2016; Vasselon 
et al. 2018; Santoferrara et al. 2020). The GCN-CF does 
not calculate the absolute cell numbers or C-mass per wa-
ter volume, but provides relative abundances within the 
community. The standardization of a protocol that com-
bines corrected metabarcoding relative abundances and 
Chl-a values might contribute to move forward towards 
a qualitative and quantitative monitoring of marine pro-
tistan plankton, using metabarcoding as core methodolo-
gy. This way, the approach presented in this work enables 
us to bridge the gap between a gold standard technique in 
plankton research (metabarcoding) and traditional phyto-
plankton biomass assessment methods (Chl-a).

At the present time, community relative abundances 
are useful and reliable in the context of ecological inter-
pretations (Piwosz et al. 2020). Even so, we believe that 
acknowledging the 18S rRNA GCN differences among 
taxa (the highest taxonomic resolution, the better) should 
become necessary in plankton metabarcoding over the 
next few years, since the application of a robust gene copy 
number CF will result in more accurate representations of 
the eukaryotic community structure. Even if clade specif-
ic values for corrections might be used as well, we must 
be aware that this presents its own problems due to high 
variances between GNC among groups (i.e.: ciliates).

Conclusion

In the current study, we present a promising mean to 
measure more accurately the relative abundances of the 
defined marine protistan plankton groups. Our findings 
highlighted the need to account for these taxonomic dif-
ferences in the 18S rRNA gene copy number in marine 
eukaryotic community studies and we proved that these 
might largely impact the estimates of relative abundanc-
es. We believe that the major disproportions given by 
biological biases in DNA-barcoding in plankton surveys 
may be strongly reduced using a gene copy number cor-
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rection factor that can partially be explained by the differ-
ences among plankton groups.

However, the development of GCN-CF can be chal-
lenging depending on the taxum/specimen studied, as it 
requires finding a clear relationship between DNA reads 
and taxum/specimen proportions. This might be hardly 
possible due to the accumulation of quantification biases 
(e.g. cell density, cell biomass, genome size, gene copy 
number, intra-genomic polymorphisms) in certain marine 
plankton group and taxa.

The applied CF did not account for technical biases, 
but it greatly improved the relationship between DNA se-
quence read abundances and cell percentages by the tradi-
tional morphological microscopy for three out of the four 
groups studied, helping to normalize severe dispropor-
tions. The use of the simple and time-cost effective meth-
od presented could open a window in the meta-omics era 
where DNA-barcoding becomes a predominant technique 
to assess the major taxonomic groups both qualitatively 
and quantitatively. Since we are persuaded that the one-
to-one relationship between 18 rRNA amplicon reads and 
cells/C-biomass is no longer acceptable to depict protistan 
plankton communities, the here presented approach not 
only improves the quantification approach in plankton me-
tabarcoding, but beyond that, it opens up many new oppor-
tunities and challenges: data from eDNA metabarcoding 
could be easily compared and combined with the output 
of other approaches such as mathematical modeling of the 
lower trophic levels in aquatic ecosystem (often C-bio-
mass based), which is an aspiration for many biologists.

Further investigation is needed, not only as regards 
the development of the eukaryotic 18S rRNA gene copy 
number database (which may lead to the refinement of the 
proposed method) but also regarding the sample set used 
to apply the CF, which should aim for a wider temporal 
and geographical scope. Accounting for these factors will 
help to develop correction factors to improve estimates of 
community abundances.
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