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Abstract
During the recent decade, high-throughput sequencing (HTS) techniques, in particular, DNA metabarcoding, have facilitated in-
creased detection of biodiversity, including harmful algal bloom (HAB) species. In this study, the presence of HAB species and 
their appearance patterns were investigated by employing molecular and light microscopy-based monitoring in Tokyo Bay, Japan. 
The potential co-appearance patterns between the HAB species, as well as with other eukaryotes and prokaryotes were investigated 
using correlation and association rule-based time-series analysis. In total, 40 unique HAB species were detected, including 12 tox-
in-producing HAB species previously not reported from the area. More than half of the HAB species were present throughout the 
sampling season (summer to autumn) and no structuring or succession patterns associated with the environmental conditions could 
be detected. Statistically significant (p < 0.05, rS ranging from −0.88 to 0.90) associations were found amongst the HAB species and 
other eukaryotic and prokaryotic species, including genera containing growth-limiting bacteria. However, significant correlations 
between species differed amongst the years, indicating that variability in environmental conditions between the years may have 
a stronger influence on the microalgal community structure and interspecies interactions than the variability during the sampling 
season. The association rule-based time-series analysis allowed the detection of a previously reported negative relationship between 
Synechococcus sp. and Skeletonema sp. in nature. Overall, the results support the applicability of metabarcoding and HTS-based 
microalgae monitoring, as it facilitates more precise species identification compared to light microscopy, as well as provides input 
for investigating potential interactions amongst different species/groups through simultaneous detection of multiple species/genera.
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Introduction
Microscopic algae are unicellular eukaryotic or prokaryotic 
organisms present in various aquatic environments. Mi-
croalgae may exist as individual cells or form chains or col-
onies. Some of them are important as primary producers, 

generating about 48% of the annual net primary produc-
tion (Field et al. 1998). About 300 microalgal species are 
associated with harmful algal blooms (HABs; Hallegraeff 
2004; Berdalet et al. 2016), a proliferation of microalgal 
cells, where cell abundances may reach up to millions of 
cells per litre (Zhang et al. 2012; Burson et al. 2014; Du et 
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al. 2016; Viana et al. 2019). The main harmful effects are 
related to oxygen depletion, attenuation of light conditions, 
toxicity and clogging of fish gills (Hallegraeff 2004; Ander-
son 2009). HABs can also have a notable economic impact 
due to fish mortality and closure of fisheries, discolouration 
of seaweed (Pyropia yezoensis) cultures, negative influ-
ence on tourism, additional costs on monitoring and public 
health (Miyahara et al. 1996; Whyte et al. 2001; Imai et al. 
2006; Lee et al. 2013; Yamaguchi et al. 2014; Clément et 
al. 2016; Du et al. 2016; Sanseverino et al. 2016). During 
recent decades, blooms, areas affected by HABs and distri-
bution ranges of HAB species have expanded (Hallegraeff 
2004; Anderson et al. 2012a; Kudela and Gobler 2012; 
Zhang et al. 2012; Koch et al. 2014; Shimada et al. 2016; 
Natsuike et al. 2019).

To prevent or minimise the adverse effects associat-
ed with HABs, information on HAB species distribution 
and factors supporting/hindering their growth, for ex-
ample, environmental parameters and other organisms, 
is needed. Traditionally, microalgae, including the HAB 
species, have been identified and enumerated, based on 
their morphology using light microscopy (Nishikawa et 
al. 2010; Lefebvre et al. 2011; Lee et al. 2013; Yasakova 
2013; Eriksen et al. 2019). However, the exact identifi-
cation may be hampered by similar or variable morphol-
ogy, small cell size as well as by the influence of fixa-
tives on cells (Rhodes 1998; John et al. 2005; Zingone 
et al. 2006; Galluzzi et al. 2008; Gran-Stadniczeñko et 
al. 2017). Improved species detection can be achieved 
by employing high-throughput sequencing (HTS) meth-
ods, such as DNA metabarcoding. This approach allows 
amplifying the gene of interest from a mass collection of 
organisms or environmental DNA (eDNA) and thus tar-
get multiple species simultaneously (Moreno-Pino et al. 
2018; Nagai 2018; Nagai et al. 2019). Metabarcoding has 
also been applied for investigating the diversity of mi-
croalgae, which has uncovered the presence of previously 
unknown HAB species/genera for the sampling area (e.g. 
Dzhembekova et al. 2017; Elferink et al. 2017; Nagai et 
al. 2017; Moreno-Pino et al. 2018; Gran-Stadniczeñko et 
al. 2019; Sildever et al. 2019, 2021; Sze et al. 2019; Liu 
et al. 2020).

Furthermore, eDNA metabarcoding has been suc-
cessfully applied to reveal appearance patterns for sev-
eral organism groups ranging from bacteria to mammals 
(Nagai et al. 2016; Hirai et al. 2017; Sigsgaard et al. 
2017; Stoeckle et al. 2017; Berry et al. 2019; Zhang et al. 
2020; Sildever et al. 2021; Alter et al. 2022), including 
the HAB species (Nagai et al. 2017, 2019; Sildever et al. 
2019). As several genes or markers can be amplified from 
the same sample, co-appearance patterns and associations 
amongst species and groups can also be investigated (Li-
ma-Mendez et al. 2015; Sawaya et al. 2019; Djurhuus et 
al. 2020). This may be especially useful as changes in 
species diversity, presence of different bacteria and par-
asites can be monitored continuously over a longer time 
scale together with the HAB species to recognise changes 
in those parameters/organism groups as indicators of the 

state of the HABs (Yang et al. 2015; Hattenrath-Lehmann 
and Gobler 2017; Berdjeb et al. 2018; Shin et al 2018; 
Hattenrath-Lehmann et al. 2019; Nagai et al. 2019; Jan-
kowiak and Gobler 2020; Yarimizu et al. 2020).

During recent decades, several bacteria displaying 
growth-limiting influence on the HAB causative 
microalgae have been isolated from the natural 
environment to find a method to control the HAB 
occurrence and duration (Imai et al. 1993; Lovejoy 
et al. 1998; Nagai and Imai 1999; Skerratt et al. 2002; 
Kim et al. 2008; Zheng et al. 2018; Inaba et al. 2019, 
2020). However, currently, no data are available to 
demonstrate the growth-limiting influence of bacteria 
on HAB causative species in nature (Mayali and Azam 
2004; Meyer et al. 2017), although their influence on 
modifying the natural phytoplankton communities has 
been demonstrated in a laboratory experiment (Bigalke 
et al. 2019). Thus, both eukaryotes and prokaryotes were 
targeted in this study in Tokyo Bay from May/June to 
October 2017 and 2018 using metabarcoding.

Tokyo Bay is a semi-enclosed bay located in central Ja-
pan, connected with the Pacific Ocean through the Uraga 
Channel. The area of the Bay is 1500 km2 (Hattori 1982) 
with an average depth of 45 m (Kokubu et al. 2013). In 
total, 36 rivers flow to the bay (Nihei et al. 2009) with 
higher discharges between June to September (Koku-
bu et al. 2013). Dominant seasonal winds are from the 
northeast during winter and from the southwest during 
summer (Oda and Kanda 2009). Water exchange between 
the ocean and Bay is driven by the estuarine circulation 
and is influenced by freshwater input and solar radiation 
(Nakayama 2006). During summer, the water residence 
time is around 15 to 35 days (Takao et al. 2004). The main 
currents in Tokyo Bay are tidal and residual currents, 
whereas the offshore current from the ocean rarely influ-
ences the circulation in the inner bay (Suzuki and Mat-
suyama 2000). There is a notable seasonal variation in 
residual current due to variations in river outflow, heating 
and cooling of the sea surface and prevailing winds (Guo 
and Yanagi 1996). The water column in the inner part of 
Tokyo Bay is strongly stratified from June to October, 
whereas from November to March, the water column is 
mixed through (Nakane et al. 2008; Bouman et al. 2010). 
In summer, diurnal amplitude in sea surface temperature 
is > 1 °C, with the maximum measured difference of 
5.5 °C (Oda and Kanda 2009).

Microalgal abundance is the highest between March 
and October and the community is dominated by diatoms 
(Nakane et al. 2008). The Bay became eutrophicated 
between the 1950s and 1970s, which was also reflected 
in the microalgal community composition as a loss of 
oceanic/neritic species replaced by a few dominant 
species (Nomura 1998). The annual average occurrence 
of HABs also increased with eutrophication from an 
average of two HABs per year until the 1940s to 19 
times per year in the 1980s (Nomura 1998). The post-
bloom accumulation of decaying algal cells in the seabed 
contributes to the development of hypoxia, resulting in 
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losses in benthic communities (Toba et al. 2008; Kodama 
and Horiguchi 2011). The main HAB causative species 
in Tokyo Bay are a diatom Skeletonema costatum and a 
raphidophyte Heterosigma akashiwo (Nomura 1998) with 
28 toxin-producing species also recorded from the Bay 
(Nomura and Yoshida 1997; Nomura 1998; Matsuoka et 
al. 2003; Yap-Dejeto et al. 2010; Yuki and Yoshimatsu 
2012; Demura et al. 2014; Nagai et al. 2017).

This study focuses on the usefulness of metabarcoding 
for microalgal monitoring with emphasis on HAB species 
by using universal primers targeting the 18S ribosomal 
RNA gene. Additionally, patterns in the HAB species ap-
pearance and associations amongst HAB species, as well 
as between HAB species and environmental parameters, 
other eukaryotes and bacteria, were investigated.

Methods

Sampling and DNA extraction

Surface seawater was collected weekly between June 
2017 and October 2017 (n = 21), as well as between May 
2018 and October 2018 (n = 24) from Tokyo Bay, Japan 
(35°34.60'N, 139°65.72'E, Fig. 1) by using a bucket. 
Water temperature and salinity were measured during 
sampling by a YSI Pro30 conductivity and temperature 
sensor (Xylem Inc., USA). A 50 ml subsample was taken 
for nutrient and ion chemical analysis (NO2, NO3, PO4, 
Si, Na, Mg, S, Ca, K, Sr, B and Li). Inductively coupled 
plasma optical emission spectroscopy (ICP_OES, SPEC-
TROBLUE, AMETEK Inc. USA), equipped with an 
autosampler ASX-260 (Cetac Technologies) and Smart 

Analyzer Vision 6.01.0945 software, was employed for 
ion analysis (Sekiyama et al. 2011; Ito et al. 2014; Ogawa 
et al. 2014; Oita et al. 2018;). The ICP-OES operating 
conditions were as follows: power 1.4 kW, plasma gas 
flow 12 l min−1, auxiliary gas flow 1.0 l min−1, nebuliser 
gas flow 1.00 l min−1 and peristaltic pump speed 30 rpm. 
From the obtained data, a matrix was built using the 
concentration in ppm for each element against the sam-
pling points from the average result of the optimal dilu-
tion with the optimal wavelengths. Nutrient analysis was 
performed by a DR 3900 spectrometer (Hach, United 
States) using the following reagent kits: Total nitrogen 
– TNT826, ammonia – TNT830, nitrate – TNT835, ni-
trite – TNT839 and phosphate – TNT535. The analyti-
cal protocols followed the vendor’s manual. For Chl a 
analysis, 100 ml of water was filtered through GF/F filter 
(Whatman, GE Healthcare, Tokyo, Japan) and stored in 
an N,N-Dimethylformamide at −20 °C until analysed fol-
lowing the workflow in Holm-Hansen et al. (1965) and 
using a Turner Designs fluorometer (10 AU).

Microalgae were identified and enumerated from 
1 ml of raw seawater and also from 1 ml of Lugol (2%) 
fixed sample concentrated from 200 ml of water to 
8–10 ml by using an inverted microscope (Eclipse Ti-U, 
Nikon, Tokyo, Japan) and a Sedgewick Rafter counting 
chamber. The cells in the entire chamber were identified 
and enumerated. Morphologically similar species, for 
example, belonging to Chaetoceros, Pseudo-nitzschia and 
Skeletonema, were identified to genus level. Microscopic 
count data on species/genus level is only available from 
2018, whereas total microalgal cell count data is available 
for 2017. For metabarcoding, 200–1000 ml of seawater 
was filtered through 8 and 1 µm (in 2017) or 1 µm (in 2018, 

Figure 1. Sampling location in Tokyo Bay, Japan. The red square symbolises Tokyo Bay on the Pacific coast of Japan and the red-
filled square indicates the sampling location in Tokyo Bay.
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8 µm filtration was discontinued to reduce the number of 
steps in the DNA extraction) and 0.22 µm pore-size filters 
(Nuclepore membrane, GE Healthcare, Tokyo, Japan). 
DNA was extracted after filtration or stored at −20 °C until 
the extraction by using a 5% Chelex buffer (Chelex 100, 
Molecular Biology Grade Resin, Bio-Rad, Hercules, CA, 
USA), following the protocol described by Nagai et al. 
(2012). First, 250 µl of the 5% Chelex buffer was added 
to the 1.5 ml tubes containing the filters. A pellet pestle 
motor (Kontes Glass, Vineland, NJ, USA) was used for 
30 s to break the cells on the filters. As the final step in the 
extraction, the samples were heated for 20 min at 97 °C.

Paired-end library preparation, sequencing and bio-
informatics

For 2017 samples, DNA extracted from 1 and 8 µm filters, 
was mixed in equal volumes and used as a template for 
paired-end library preparation. For 2018, DNA extract-
ed from 1 µm filters, was used as a template. Eukaryotic 
species were targeted by universal primers for the 18S 
rRNA gene (V7-V9 region, Dzhembekova et al. 2018). 
For prokaryotic species, universal 16S rRNA gene prim-
ers (V3-V4 region, Herlemann, et al. 2011) were used 
with DNA extracted from both filter fractions (0.22 µm 
– 1 µm and ≥ 1 µm) as a template. Two-step PCR for the 
construction of paired-end libraries and HTS on the Illu-
mina MiSeq platform (MiSeq Reagent Kit v.3, 600-cycle; 
Illumina, San Diego, CA, USA) followed the protocol 
in Dzhembekova et al. (2017). Treatment of obtained 
sequences, selection of operational taxonomic units 
(OTUs) and taxonomic identification of OTUs were done 
according to the workflow described by Dzhembekova et 
al. (2017) with the exception that sequences longer than 
300 bp were truncated to 300 bp by trimming the 3′ tails.

The demultiplexing and trimming were performed 
using Trimmomatic version 0.35 (http://www.usadellab.
org/cms/?page=trimmomatic). Nucleotide sequences 
were demultiplexed according to the 5´-multiplex identi-
fier (MID) tag and primer sequences were demultiplexed 
according to the default format in MiSeq. Sections con-
taining: (1) palindrome clips longer than 30 bp and (2) 
monopolymers longer than 9 bp were trimmed from the 
sequences at both ends. 3´ tails with an average quality 
score lower than 30 at the end of the final 25-bp window 
were also trimmed from each sequence. 5´ and 3´ tails 
with an average quality score lower than 20 at the end 
of the final window were also trimmed. The remaining 
sequences were merged into paired reads using Usearch 
version 8.0.1517 (http://www.drive5.com/usearch/) with 
default settings (≥ 16 bp overlap, ≥ 90% similarity and 
mismatch ≤ 5 bp; http://www.drive5.com/usearch/man-
ual/merge_options_html) resulting in a maximum se-
quence length of 584 bp. Singletons were also removed. 
Sequences were aligned using Clustal Omega v. 1.2.0. 
(http://www.clustal.org/omega/) and only sequences that 
were contained in more than 75% of the read positions 
were extracted. Filtering and a part of the multiple align-

ment process were performed using the screen.seqs and 
filter. seqs commands in Mothur, as described in the MiSeq 
SOP (http://www.mothur.org./wiki/MiSeq_SOP; Schloss 
et al. 2011). Erroneous and chimeric sequences were de-
tected and removed using the pre.cluster (diffs = 4) and 
chimera.uchime (minh = 0.1; http://drive5.com/usearch/
manual/uchime_algo.html; Edgar et al. 2011) commands 
in Mothur, respectively. Using the unique.seqs command 
of Mothur, the same sequences were collected into OTUs. 
The contig sequences were counted as OTUs by count.
seqs and used for the subsequent taxonomic identifica-
tion analysis. Demultiplexed, filtered, but untrimmed se-
quence are available in the DDBJ Sequence Read Archive 
(Accession number: DRA013265). Sequences were clus-
tered to OTUs at ≥ 99% similarity level. The sequence 
database, used for assigning taxonomy to OTUs, was 
downloaded from GenBank on 22.03.2019. OTUs asso-
ciated with multiple records from the same genus were 
merged with the OTU associated with a single species 
from the same genus if the multiple records consisted of 
a single species and other records identified as sp. of the 
same genus. For eukaryotes, only OTUs that had ≥ 99% 
similarity with the best match from the database were 
used for further analysis. For prokaryotes, only OTUs 
with > 50 total sequence reads for each fraction and sam-
pling year were included in the further analysis.

HAB species selection

The presence of HAB species amongst the detected 
eukaryotic OTUs was investigated by comparing the list 
of OTUs associated with phytoplankton species against 
the IOC-UNESCO Taxonomic Reference List of Harmful 
Micro Algae (Moestrup et al. 2022), as well as with the 
known non-toxic HAB species from the Tokyo Bay 
(Takano 1956; Nomura 1998). To avoid the inclusion 
of OTUs with ambiguous identities, representative 
sequences of all OTUs associated with the HAB species 
were also manually BLAST-searched from the GenBank 
online database (https://blast.ncbi.nlm.nih.gov/Blast.cgi). 
The validity of the taxonomic names was checked against 
the AlgaeBase (http://www.algaebase.org/) and the World 
Register of Marine Species (http://www.marinespecies.
org/). Only OTUs that had the ≥ 99% BLAST top 
hit similarity with the associated single species were 
included in the further analysis. For OTUs associated 
with Alexandrium catenella and Alexandrium tamarense, 
the nomenclature described by Litaker et al. (2018) was 
followed. To facilitate the comparison with the LM data, 
OTUs are referred to as species or genera. For example, 
species belonging to Pseudo-nitzchia were detected to 
the genus level by LM; however, they are also shown as 
single species detected by the metabarcoding and HTS 
to provide more detailed information. Species belonging 
to genera/higher taxonomic levels reported by Nomura 
(1998; Chaetoceros, Euglenophyceae, Gymnodinium, 
Naviculaceae, Prorocentrum, Pyramimonas, Rhizosolenia 
and Thalassiosira) are shown on a genus/higher taxonomic 
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level. An exception to this is Cryptomonadaceae spp., 
which is represented by Goniomonas aff. amphinema 
as it was the only species from this group detected by 
metabarcoding and the HTS-approach, whereas no 
species belonging to this group were detected by LM in 
this study.

Statistical analysis

All data analysis was conducted in R v. 4.0.3 (R Core 
Team 2021) using the “vegan” (v.2.5-7, Oksanen et al. 
2021) or “psych” packages (correlation analysis; Rev-
elle 2020). The number of shared OTUs amongst dif-
ferent sampling years and methods was analysed and 
visualised as a Venn diagram. As LM did not allow 
species-level identification for some genera, the number 
of shared OTUs is compared both at species and genus 
levels. Species richness was calculated as the number of 
OTUs. Ordination analyses were applied to reveal the 
relationship between the presence/absence of OTUs as-
sociated with HAB species and several environmental 
parameters. First, a Detrended Correspondence Anal-
ysis was performed to choose between linear and uni-
modal ordination methods. The length of the first DCA 
axis was < 3 standard deviations for 2017 and 2018 data 
(Table 1) and, thus, linear methods were applied (PCA: 
Principal Component Analysis and RDA: Redundancy 
Analysis; Ter Braak and Prentice 1988). PCA was used 
to investigate general trends in the HAB species appear-
ances with environmental parameters added as vectors 
using the envfit function. RDA was used to analyse the 
influence of environmental parameters on the HAB spe-
cies’ appearances. Monte Carlo Permutation tests with 
999 unrestricted permutations were applied to test the 
significance of the variation in community composition 
explained by the environmental variables under a glob-
al model. When the result was statistically significant, 
further Monte Carlo permutation tests with 999 unre-
stricted permutations were performed to test the varia-
tion explained by the individual axes and environmental 
variables. Spearman correlations between environmen-
tal parameters and presence/absence of OTUs associat-
ed with each HAB species, between OTUs associated 
with HAB species, other eukaryotic species detected 
and with bacteria were calculated. P-value was adjusted 
for multiple comparisons by the Benjamini-Hochberg 
correction (Benjamini and Hochberg 1995). The cor-
relation analysis results were visualised by heatmap.2 
(“gplots” v.3.1.1; Warnes et al. 2020) between eukary-
otes and by Gephi (v. 0.9.2; Bastian et al. 2009) between 
pro- and eukaryotes.

Association rule-based time-series analysis

Association rule-based time-series data analysis (Asano 
et al. 2019) was applied for investigating the changes in 
phytoplankton abundance following the changes in bacterial 
abundance. The method allows us to find association rules 

considering the potential lag effect (Agrawal et al. 1993), 
for example, changes in cell abundance or number of 
live cells may display a lagged response to a change in a 
parameter (Collos 1986; Nagai and Imai 1999; Śliwińska-
Wilczewska et al. 2019). The number of sequence reads for 
Gymnodinium spp., Pseudo-nitzschia spp. and Skeletonema 
spp. were analysed, together with the bacterial sequence 
reads from 2017 and 2018 (non-rarefied data). Those groups 
were chosen due to their presence throughout most of the 
sampling season in both years. To obtain a minimum of 
four association rules per group analysed, the characteristic 
change in each group was set as follows: p  =  0.1 for 
Gymnodinium spp. and Pseudo-nitzschia spp. and p = 0.3 
for Skeletonema spp. The analysis was implemented in R v. 
4.0.3 (R Core Team 2021).

Results

Environmental parameters

During both years, salinity and water temperature dis-
played a similar pattern ranging from 24.5 to 32 and 
18.2  °C to 27.9 °C in 2017 and from 23.9 to 32.6 and 
17.4  °C to 28.9 °C in 2018, respectively (Fig. 2). The 
chlorophyll a pattern was more variable between the 
years with the values from 0.7 to 271.35 µg l-1 in 2017 
and from 1.6 to 77.59 µg l-1 (Fig. 2). Nitrite concentra-
tions ranged from 0.015 to 0.042 mg l-1 in 2017, but were 
mainly below the detection limit for 2018. Nitrate (0.23–
0.54 mg l-1) and phosphate (0.02–0.58 mg l-1) data were 
only available for 2018. Silicate concentrations were al-
most constant throughout the sampling seasons, probably 
reflecting an analytical error and were thus excluded (data 
not shown). Ion concentrations fluctuated throughout the 
sampling seasons (Fig. 2). Na, Mg and Ca concentrations 
followed the fluctuations in salinity. Li concentrations 
had two peaks at the beginning of 2017 with maximum 
values reaching 103 parts per billion.

Overview of detected eukaryotes and prokaryotes

For eukaryotes, an average of 26,781 (SD: 3,801) se-
quences were detected per sample in 2017, whereas in 
2018, it was 14,508 (SD: 3,593) sequences (after bioin-
formatics treatment, Suppl. material 2: Tables S2, S3). 
For prokaryotes, the average sequence reads were 30,974 
(SD: 5,729) and 6,695 (SD: 2,276) for samples analysed 
from 1 µm filters in 2017 and 2018 (Suppl. material 2: Ta-
bles S4, S6). For samples from the 0.22 µm filters, the av-
erage number of sequences per sample was 43,532 (SD: 
4,036) and 13,676 (SD: 2,116) in 2017 and 2018 (Suppl. 
material 2: Tables S5, S7). The OTU accumulation curves 
(Suppl. material 1: Figs S1–S2) indicate that the number 
of OTUs is nearly saturated for samples from 2017 and 
2018, based on the 18S marker, but in the case of the 16S 
marker, the low number of OTUs and sequences for 2018 
samples are visible.
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In 2017, 673 unique eukaryotic OTUs (≥ 99% BLAST 
top-hit similarity) were detected, belonging to nine dif-
ferent supergroups and 32 phyla (Suppl. material 2: 
Table S2). In 2018, 616 eukaryote OTUs from nine su-
pergroups and 34 phyla were present (Suppl. material 
2: Table S3). In both years, the majority of the OTUs 
belonged to Metazoa, Dinophyceae or Bacillariophyta 
(Suppl. material 2: Tables S2, S3). The minimum num-
ber of unique OTUs were 120 and 105 and the maximum 
number of OTUs were 265 and 234 in 2017 and 2018, 
respectively (Fig. 2). The number of cells detected by mi-
croscopy ranged from 3 to 10,954 cells ml-1 in 2017 and 
2018 (Fig. 2). Unfortunately, species-level information, 
based on light microscopy, is not available for 2017, but 
in 2018, the number of species detected per sample ranged 
from 17 to 50 with an average of 34 species (Fig. 2).

In prokaryotes, 715 unique OTUs (≥ 50 sequences) 
were present in the 0.22–1 µm bacteria fraction () in 
2017, whereas 1092 OTUs were detected from the ≥ 1 µm 
bacteria fraction (Suppl. material 2: Tables S4, S5). In 
2018, the number of OTUs detected was lower for both 
fractions, 424 and 413, respectively (Suppl. material 2: 
Tables S6, S7). In 2017, the prokaryote OTUs belonged 

to 19 and 33 phyla, respectively (the 0.22–1 µm / ≥ 1 µm 
fractions; Suppl. material 2: Tables S4, S5), whereas in 
2018, the respective values were 17 and 22 (Suppl. mate-
rial 2: Tables S6, S7). In 2017, the ≥ 1 µm bacteria were 
mainly dominated by Bacteroides/Chlorobi group and 
Gammaproteobacteria, whereas in the 0.22–1 µm group, 
bacteria associated with Alphaproteobacteria and Actino-
bacteria were most abundant. In 2018, the main groups 
represented by the bacterial OTUs were the same for both 
fractions: Bacteroides/Chlorobi group, followed by Gam-
ma- and Alphaproteobacteria.

Number of HAB species/genera detected and appear-
ance patterns

In total, 29 unique genera associated with HAB species 
and 40 unique HAB species were detected from 
Tokyo Bay during two years of monitoring, based on 
metabarcoding and the HTS approach and morphology-
based identification under LM (Suppl. material 2: 
Table S1). Of the 40 species detected, 30 are known as 
toxin-producers (Moestrup et al. 2022) and 12 of these 
have not been previously reported from Tokyo Bay (Suppl. 

Figure 2. Overview of the environmental parameters, nutrient and ion concentrations (ppb = parts per billion) during sampling 
periods, blue line: 2017, red line 2018.
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material 2: Table S1). Metabarcoding and the HTS-
approach allowed the detection of 26 genera, whereas 17 
genera were detected, based on morphology using LM. 
However, three of those (Dactylisolen, Eucampia and 
Leptocylindrus) were not detected by metabarcoding and 
HTS (Fig. 3, Suppl. material 2: Table S1). The genera 
detected in 2017 were also present in 2018, whereas 
four genera were only registered in 2018 (Goniomonas, 
Phaeocystis, Pseudochattonella and Rhizosolenia; Suppl. 
material 2: Table S1). Based on metabarcoding and HTS 
data from both years, 36 HAB species were detected 
compared to 14 HAB species identified under LM in 
2018 (Fig. 3, Suppl. material 2: Table S1). In 2018, five 
additional species (Alexandrium catenella, A. pacificum, 
Goniomonas aff. amphinema, Phaeocystis globosa and 
Pseudochattonella verruculosa) were detected by HTS 
compared to 2017. The total number of species/genera 
detected by metabarcoding and the HTS approach was 43, 
whereas LM allowed the detection of 20 species/genera.

Based on metabarcoding and the HTS approach, 65% of 
the detected HAB species/genera (n = 37) were present in 
more than half of the sampling occasions in 2017 (June – 
October, n = 21) with Karlodinium veneficum, Chaetoceros 
spp., Prorocentrum spp., Skeletonema spp. and Thalassiosira 
spp. detected from all the samples (Fig.  4). At the same 
time, A. minutum and Azadinium poporum were detected 
only once or twice, respectively (Fig. 4). In 2018, 42% of 
the detected species/genera (n = 43) were present in more 
than half of the samples (May – October, n = 24). Similar 
to 2017, K. veneficum, Chaetoceros spp. Skeletonema spp. 
and Thalassiosira spp. were detected from all the samples, 
whereas A. catenella, Goniomonas spp., Mesodinium 
rubrum, P. verruculosa and Rhizosolenia spp. were present 
in one sample and A. pacificum in two samples (Fig. 4). 
In morphology-based identification by LM, 50% of the 
detected species/genera were present in more than half of 

the sampling occasions in 2018 (Suppl. material 1: Fig. S3). 
Chaetoceros species were detected from all the samples 
and species belonging to Pseudo-nitzschia were present in 
more than 90% of the samples (Suppl. material 1: Fig. S3). 
Karenia mikimotoi, K.papilionaceae, Polykrikos hartmanii, 
Phaeocystis globosa and Prorocentrum triestinum were 
detected once, whereas, based on metabarcoding and the 
HTS approach, the species were present in 19, 4, 12, 3 and 
21 samples, respectively (Fig. 4, Suppl. material 1: Fig. S3). 
On the contrary, Mesodinium rubrum was identified from 
15 samples using LM, whereas, based on metabarcoding 
and HTS, the species was detected from only one sample 
in 2018.

Statistical analysis

Ordination

In the PCA, the first two axes explained 35.23% (2017) 
and 30.62% (2018) of the variability in the OTU relative 
abundances (Suppl. material 1: Fig. S4). In 2017, the water 
temperature was significantly (p < 0.05) associated with 
the variability represented by the first two axes, whereas 
no significant associations were detected, based on the 
2018 dataset (Table 1). In the RDA, the environmental 
parameters explained 69.98% of the variability in the 2017 
dataset and 55.79% in the 2018 dataset. The Monte Carlo 
permutation test indicated that, in 2017, significant amount 
of variation (p = 0.002) in the species composition can 
be explained by the environmental parameters; however, 
for the 2018 dataset, no significant influence was detected 
(Table 1). The permutation test for individual axes in the 
2017 dataset indicated the importance of the first axis (p 
= 0.003). Salinity, water temperature and magnesium (Mg) 
concentration were identified as parameters significantly 
influencing the community composition (p < 0.05; 
Table 1). In both years, the majority of OTUs clustered 
to the centre of the plot and some of those were placed 
together with a change in the environmental parameter 
in the RDA. A high number of OTUs clustered together 
with an increasing water temperature in both years, 
whereas for other parameters, the pattern was not as clear 
(Fig. 5). In the RDA from 2017, Prorocentrum cordatum 
was placed close to increasing Mg concentrations and 
Noctilluca scintillans with increasing water temperature 
(Fig.5A). In 2018, Phaeocystis globosa appeared together 
with increasing phosphate concentrations, whereas 
Phalacroma rotundatum and Pseudo-nitzschia pungens 
were placed together with increasing salinity and nitrate 
concentrations (Fig. 5B).

Correlation

Environmental parameters

The majority of the OTUs associated with HAB species/
genera had no statistically significant (p > 0.05) correla-
tions with the environmental parameters during both 
years (data not shown). An exception was Cerataulina 
pelagica displaying a significant positive correlation 

Figure 3. A. Number of unique genera; B. Number of unique 
species detected, based on light microscopy (LM) and by me-
tabarcoding and the HTS approach in 2017 and 2018. As LM did 
not allow species-level identification for some genera, the num-
ber of shared OTUs is compared both at species and genus levels.
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Figure 4. Presence-absence of HAB species/genera detected by metabarcoding and the HTS approach from 2017 and 2018. The 
black line indicates the division between the two years, the red colour indicates presence and the white absence. The left colour 
panel indicates months. Toxin-producing species (Moestrup et al. 2022) are indicated in bold. C: Cryptophyceae; CI: Ciliophora; 
RA: Raphidophyceae.

Table 1. Correlations of environmental parameters with PCA axes and Monte Carlo permutation test results for RDA, based on 
eukaryotic OTUs associated with HAB species/genera and environmental parameters in 2017 and 2018. Sal: salinity, WT: water 
temperature, Mg: magnesium.

Dataset DCA 1st axis 
length

Sign. correlation of env. param. with 
the PCA axes 1 and 2 (R2/p-value)

Global test 
(F/p-value)

Sign. axis (F/p-value) Sign. env. param. (terms) 
(F/p-value)

Sign. env. param. 
(margin) (F/p-value)

2017 1.62 WT (0.46/ 0.01) 1.55/0.002 RDA1 (5.70/0.003) Sal (1.85/0.036) WT (1.84/0.046)
WT (4.20/0.001)
Mg (2.80/0.001)

2018 1.8 0.405

with the water temperature in 2017 (p < 0.05, rS = 0.71). 
Additionally, Pseudo-nitzschia delicatissima had sig-
nificant negative correlations with silicate (p = 0.02, rS 
= −0.75) and lithium (p = 0.02, rS  = −0.74). In 2018, 
a significant positive correlation (p = 0.004, rS = 0.81) 
was detected between Phaeocystis globosa and silicate 
concentrations.

Other HAB species

In 2017, 14 OTUs associated with the HAB species/genera 
out of 37 were significantly (p < 0.05) correlated with other 
HAB-associated OTUs and in 2018, 19 OTUs from 43 were 
also significantly correlated with other HAB-associated 
OTUs (Suppl. material 2: Tables S8–S9, Suppl. material 1: 
Fig. S5). The highest number of significant correlations per 
OTU was similar amongst the years (4 and 3 per OTU, re-
spectively); however, OTUs showing the highest number 

of correlations differed amongst the years (Suppl. material 
2: Tables S8–S9). In both 2017 and 2018, significant pos-
itive correlations were detected between P. australis and 
P. multiseries (2017: p < 0.0001, rS = 0.84, 2018: p = 0.024, 
rS = 0.63) as well as between P. cuspidata and P. turgidula 
(2017: p = 0.02 rS = 0.67, 2018: p = 0.001, rS = 0.74).

Eukaryotes

In both years, all of the OTUs associated with the HAB 
species/genera had significant (p < 0.05) correlations 
with other OTUs representing various eukaryotes (Suppl. 
material 2: Tables S8–S9, Suppl. material 1: Fig. S5). From 
eukaryotic OTUs, around 17% and 21% had statistically 
significant correlations with HAB-associated OTUs in 
2017 and 2018, respectively (Suppl. material 2: Tables S8–
S9). A maximum of 30 statistically significant correlations 
were detected per HAB-associated OTU (Goniomonas sp.; 
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Suppl. material 2: Tables S8–S9). In both 2017 and 2018, 
P. australis was significantly correlated with Eucampia 
spp. (2017: p = 0.009, rS = 0.77, 2018: p = 0.01, rS = 0.72) 
and also with Thalassiosira rotula (2017: p =  0.009, 
rS = 0.77, 2018: p = 0.01, rS = 0.72).

Prokaryotes

In 2017, more than half of the OTUs associated with HAB 
species had significant (p < 0.05) correlations with bacteria 
belonging to 0.22–1 µm and ≥ 1 µm fractions (Suppl. ma-
terial 2: Tables S10–S11, Fig. 6). In 2018, more than half 
of the HAB-associated OTUs were significantly correlated 
with bacteria from the ≥ 1 µm fraction, whereas 43% dis-
played a significant correlation with the 0.22–1 µm bac-
teria fraction. The correlations between OTUs associated 
with HAB and bacteria were between different OTUs in 
different years. Based on both size fractions and years, 35 
OTUs associated with genera containing growth-limiting 
bacteria were detected that were significantly (p < 0.05) 
correlated with HAB-associated OTUs (Suppl. material 2: 
Table S12). In the case of the 0.22–1 µm bacteria fraction, 
most correlations with HAB species were positive in both 
years, whereas, in the case of the ≥ 1 µm bacteria fraction, 
the majority of the significant correlations were negative 
(Fig. 6). For most of the bacterial OTUs, the previous-

ly reported target HAB species did not match with the 
HAB-associated OTUs that had a significant correlation.

Association rule-based analysis of time-series data

Based on the time-series analysis of selected phyla, sev-
eral associations between bacteria and phytoplankton 
were detected (Suppl. material 2: Table S13). From the 
investigated genera, the highest number of associations 
was found between bacteria and Skeletonema spp.: 11 as-
sociations with two of those negative. For Gymnodinium 
spp. and Pseudo-nitzschia spp., nine and four associa-
tions were detected respectively and for both genera, one 
of the associations was negative.

Discussion
Two years of microalgae monitoring by metabarcoding 
and HTS in combination with light-microscopy allowed 
the detection of 29 unique genera with 40 unique spe-
cies associated with harmful algal blooms (Nomura 1998; 
Moestrup et al. 2022) with 12 toxin-producing species 
recorded for the first time from Tokyo Bay. The major-
ity of the harmful algal species/genera detected did not 
display significant correlations with the environmental 

Figure 5. Redundancy analysis, based on HAB-associated OTUs detected by metabarcoding and HTS approach, A. 2017; B. 2018.
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parameters investigated, whereas significant correlations 
were detected with other HAB species/genera, other eu-
karyotes and prokaryotes, including genera containing 
growth-limiting bacteria.

HAB species/genera detected by metabarcoding and 
HTS and by light microscopy

Overall, the metabarcoding and HTS-based approach reg-
istered 28 HAB-associated species/genera not identified 
by LM, whereas LM allowed the detection of four spe-
cies and three genera not found by metabarcoding and 
HTS. Differences in species/genera detected by the me-
tabarcoding and HTS-approach vs. LM have been previ-
ously explained by a poor match between the sequences 
of targeted taxa and the primers used, a low number of 
rRNA gene copies per cell in some genera, pre-filtration 
of samples and availability of sequences in the reference 
databases (Majaneva et al 2012; Eiler et al. 2013; Xiao et 
al. 2014; Abad et al. 2016; Banerji et al. 2018; Gran-Stad-
niczeñko et al. 2019). In the present study, the majority of 
species not detected by LM may have been unnoticed due 
to their small size (≤ 20 µm, for example, Azadinium spp., 

K. veneficum, Pyramimonas spp., Cryptomonadaceae rep-
resented by Goniomonas aff. amphinema; Martin-Cerece-
da et al. 2010; Moro et al. 2011; Wang et al. 2011; Luo 
et al. 2017) or lack of morphological features identifiable 
under LM (e.g. Alexandrium spp., Pseudo-nitzschia spp., 
T. mala; Rhodes 1998; Anderson et al. 2012b; Lim et al. 
2013; John et al. 2014; Razali et al. 2016; Bates et al. 2018; 
Prasad et al. 2018). Furthermore, species present in low 
abundance may have been missed by LM (Rodriguez-Ra-
mos et al. 2014; Engesmo et al. 2018), although both raw 
and concentrated phytoplankton samples were analysed. 
As the concentrated samples were fixed by Lugol’s iodine 
solution, identification may have also been hampered due 
to the changes in cell morphology (e.g. Fibrocapsa japon-
ica, Vrieling et al. 1995) or due to discolouration of cells, 
which could mask the morphological features (Steidinger 
and Tangen 1996).

From the four species identified only by LM, Dino-
physis caudata and Eucampia zodiacus were detected by 
metabarcoding and HTS, but the sequences also matched 
with other species from the database and were, thus, not 
included in further analysis. At the same time, Dactylio-
solen fragilissimus and Leptocylindrus minimus were 

Figure 6. Statistically significant (p < 0.05) correlations between prokaryotes and eukaryotes. Red colour lines indicate positive and 
blue colour negative correlation. GI: growth-inhibiting bacterial genera. A,B. Data from 2017 and 2018 with bacterial data from the 
0.22–1 µm fraction; C, D. data from 2017 and 2018 with bacterial data from the ≥ 1 µm fraction.
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only detected by LM. As both species have been previ-
ously reported from Tokyo Bay as HAB causative species 
(Nomura 1998), the lack of detection by metabarcoding 
may be explained by the lack of sequences present in the 
public databases as no 18S rRNA gene sequences were 
available for D. fragilissimus and only one sequence cov-
ering the target region was available for L. minimus. The 
lack of sequences covering the target region in the data-
base could also explain why Pseudo-nitzschia galaxiae 
and P. subfraudulenta that have been previously reported 
from the Bay (Nagai et al. 2017) were not detected. In a 
recent study from the Gulf of Naples, the Mediterranean 
Sea, P. galaxiae was successfully detected from eDNA 
samples by targeting the 18S rRNA gene V4 region (Rug-
giero et al. 2022). Thus, until the database is improved, 
the V4 region of the 18S rRNA gene and other genes (e.g. 
28S rRNA) could be used for improved detection of spe-
cies belonging to Pseudo-nitzschia.

Two toxin-producing dinoflagellate species, Margale-
fidinium polykrikoides and Lingulodinium polyedra were 
detected by the region targeted, but their similarity scores 
with the best database match were lower than the 99% 
criteria used in this study. Thus, the availability of more 
sequences covering the target region might also be bene-
ficial for improved identification of those species. Inter-
estingly, another toxin-producing dinoflagellate species, 
Protoceratium reticulatum, was not detected in the sam-
ples, although the cysts of this species have been report-
ed from the sediments throughout Tokyo Bay (Matsuoka 
et al. 2003). In a study from the Baltic Sea, the species 
could be successfully identified from eDNA samples us-
ing the same marker (Sildever et al. 2021). Thus, the lack 
of detection in this study could result from collecting data 
from only a single station, which does not capture the 
entire diversity of the Bay. In future studies, more sta-
tions should be included to detect as much of the diversity 
present as possible.

Some of the species identified by both metabarcod-
ing and HTS, as well as by LM, were detected in nota-
bly different numbers of sampling occasions: Karenia 
mikimotoi, K. papilionaceae, Noctiluca scintillans, Pro-
rocentrum cordatum and P. triestinum were registered 
in more samples by metabarcoding and HTS, whereas 
Mesodinium rubrum and Rhizosolenia spp. were record-
ed in a higher number of samples by LM. In the case of 
Karenia and Prorocentrum species, improved detection 
by metabarcoding and HTS may result from more precise 
taxonomic identification compared to LM, whereas for 
N. scintillans, the difference may be due to its low abun-
dance in some sampling occasions as the species is large 
and easily recognisable. Further, the discrepancy in spe-
cies identification between the two methods has also been 
explained by the differences in the sample volume anal-
ysed (Rodriguez-Ramos et al. 2014; Gran-Stadniczeñko 
et al. 2019): 200 to 1,000 ml by metabarcoding and HTS 
compared to 1 ml of raw and 1 ml of concentrated sample 
(total volume of 8–10 m from 200 ml) analysed by LM 
in this study.

In the case of M. rubrum and Rhizosolenia spp., the 
potential influence of the gene and the region targeted 
on the detection efficiency by metabarcoding and HTS 
is not supported by the continuous detection of M. ru-
brum by the metabarcoding and HTS in 2017 from To-
kyo Bay, as well as by the several Rhizosolenia species 
recorded by the same primers from another locality in 
Japan (S. Nagai, unpubl. data). Interestingly, in 2017, 
Rhizosolenia spp. was identified from several samples 
by metabarcoding and HTS, but had a lower similari-
ty (94%) with the best taxonomic match from the da-
tabase. Therefore, targeting several genes and usage of 
genus-specific primers may improve species detection 
(Gran-Stadniczeñko et al. 2017; Nagai et al. 2017; Smith 
et al. 2017; Sildever et al. 2019, 2021). The low identi-
fication of those taxa could also be related to the overall 
lower number of sequences obtained per sample in 2018 
(average 14,508 ± 3,592 sequences after bioinformatics 
treatment) compared to 2017 (26,781 ± 3,709 sequences 
after bioinformatics treatment). This is further supported 
by the OTU accumulation curve displaying lower accu-
mulation levels for the 2018 data. Thus, re-sequencing 
the samples from 2018 might improve the detection of 
those species.

HAB species/genera appearance patterns and correla-
tion with environmental parameters

The majority of detected HAB species were present 
throughout the sampling season, indicating a wide toler-
ance range for salinity and temperature. This is further 
exemplified by Pseudo-nitzschia species appearing from 
March to October in variable temperature and salinity 
conditions (this study; Yap-Dejeto et al. 2010; Nagai et al. 
2017). An exception to this was P. pseudodelicatissima, 
present mainly in July-October (this study; Yap-Dejeto et 
al. 2010), potentially due to the preference for higher sur-
face water temperatures as its growth rate increases with 
rising temperature (Lundholm et al. 1997). In Tokyo Bay, 
an increase in water temperature and input of nutrients are 
mainly responsible for short-term fluctuations in the mi-
croalgal community composition and abundance as phos-
phate is limiting growth during the stratification period 
from summer to autumn (Nakane et al. 2008; Kubo et al. 
2019). This was also visible, based on the ordination anal-
yses from both years, where around half of the HAB-asso-
ciated OTUs grouped with the increasing water tempera-
ture. In addition, based on the permutation test, changes in 
water temperature could explain a significant amount of 
variability in the HAB community composition in 2017. 
However, as the statistically significant (p < 0.05) correla-
tions with the water temperature and chemical elements 
were not continuous between the years, a general pattern 
in the HAB species appearances, based on environmental 
parameters, could not be detected.

OTUs associated with A. catenella, Goniomonas aff. 
amphinema and P. verruculosa were detected only once 
during the study period. For example, A. catenella was 
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registered in the second week of July 2018, when the wa-
ter temperature was 26.6 °C and, two weeks later, the spe-
cies was also detected from another sampling location in 
Tokyo Bay (data not shown), where it also remained the 
single detection in both years. In different coastal areas of 
Japan, the vegetative cells of A. catenella have been re-
ported from a maximum of 20 °C (Sekiguchi et al. 1986; 
Itakura et al. 2002; Yamamoto et al. 2017). In the coastal 
waters of north-eastern Japan, the cells are present from 
January to June (Kaga et al. 2006) with the highest cell 
densities at 8–9 °C (Ichimi et al. 2001). In Tokyo Bay, the 
species formed a bloom in June of 1984 (Han and Teraza-
ki 1993); however, the presence of vegetative cells has 
not been registered in later studies (Nomura and Yoshida 
1997). Furthermore, the resting cysts detected from the 
Bay and belonging to either A. catenella or A. pacificum, 
lacked cell content, potentially indicating the absence 
of a local population (Matsuoka et al. 2003; Kotani et 
al. 2006). Thus, the detection of A. catenella only once 
throughout the sampling seasons and at high surface wa-
ter temperature is potentially explained by the transport 
by currents from the neighbouring coastal areas as the 
species has caused paralytic shellfish poisoning events 
on the Pacific coast close to the entrance to Tokyo Bay 
(Kotani et al. 2006).

From other species registered only once during the 
study period, P. verruculosa was detected in the second 
week of May in 2018, when the water temperature was 
18.7 °C and salinity 31.9. Interestingly, the temperature 
and salinity were in the previously-reported ranges suit-
able for the growth of Japanese P. verruculosa throughout 
the majority of sampling occasions in both years (Yama-
guchi et al. 1997; Skjelbred et al. 2013). In southern Ja-
pan and the Seto Inland Sea, the species has been report-
ed from January and February (Yamaguchi et al. 1997; 
Orita 2016), whereas in the Sea of Okhotsk, the species 
appears throughout the year with the highest number of 
occurrences in February-March and in August (Sildever 
et al. 2019). As there are no previous published results 
on the presence of P. verruculosa in Tokyo Bay, further 
study is needed to investigate if the species could have 
been transported to the area as suggested for A. catenella 
or if the species occurs earlier in spring than the start 
of sampling periods in this study. In the case of Cryp-
tomonadaceae, presence from June to August with the 
highest abundances in August in Tokyo Bay has been re-
ported (Nomura 1998). In this study, metabarcoding and 
HTS could detect only one representative of this family, 
Goniomonas aff. amphinema, in October 2018, whereas 
other species from the same class (Cryptophyta) were 
registered continuously throughout the sampling season. 
Since it is not certain which species were considered as 
Cryptomonadaceae by Nomura (1998), for example, if 
other species from Cryptophyta were also included, it is 
not possible to compare the detected occurrence of Cryp-
tomonadaceae only based on G. aff. amphinema with 
the previous information on the appearances of Crypto-
monadaceae in Tokyo Bay.

HAB species/genera appearance patterns and correla-
tion with other species/genera

Another important aspect of structuring a species’ appear-
ance is interaction with other organisms (Lima-Mendez 
et al. 2015; Sourisseau et al. 2017; Zhou et al. 2018; Sas-
senhagen et al. 2020). In both sampling seasons, HAB 
species displayed significant positive and negative as-
sociations with other HAB, eukaryotic and prokaryotic 
species; however, the majority of the detected correla-
tions differed amongst the years, potentially explained by 
the variability in environmental conditions influencing 
the interspecific interactions (Mikhailov et al. 2019a). 
Interestingly, significant positive correlations between 
the same species in both years were detected for P. aus-
tralis and P. multiseries, P. cuspidata and P. turgidula, 
as well as between P. australis and Eucampia spp. and 
T. rotula. For all of those, presence in a wide range of 
temperature and/or salinity conditions has been report-
ed (Krawiec 1982; Yap-Dejeto et al. 2010; Nishikawa 
et al. 2011; Nagai et al. 2017; IOC-UNESCO 2021). In 
this study, the species appeared throughout the sampling 
seasons and no significant correlations with the envi-
ronmental parameters were detected. An exception was 
P. cuspidata, showing a significant positive correlation 
with the water temperature in 2017, whereas in 2018, no 
significant correlation was detected and the species ap-
peared already at lower temperatures (21.2 °C) than in 
2017 (26.9 °C). Thus, currently, no clear explanation for 
the co-appearances in both years can be provided.

Detection of 35 OTUs linked with bacteria belong-
ing to genera associated with growth-limiting effects on 
HAB species and detection of significant correlations 
between bacteria and HAB species further confirms the 
usefulness of metabarcoding and the HTS approach for 
investigating interactions amongst bacteria, phytoplank-
ton and environmental parameters (Yang et al. 2015; 
Bunse et al. 2016, 2019; Wurzbacher et al. 2017; Zhou 
et al. 2018; Cui et al. 2019). Interestingly, the majority 
of significant correlations found between HAB and bac-
teria from the genera containing growth-limiting bacteria 
were positive. However, as the detected correlations are 
not between HAB species and the bacterial strains with 
known algicidal activity (Suppl. material 2: Table S12), 
but with other bacterial strains/species from the same ge-
nus, their growth-limiting activity is not certain as it can 
vary between the strains, species within the same genus 
and also in different environmental conditions (Skerratt et 
al. 2002; Meyer and Pohnert 2019). Thus, the significant 
positive correlations detected in this study may instead 
indicate mutualism/commensalism (Paver et al. 2013; 
Mikhailov et al. 2019b) or co-appearance due to indirect 
reasons, for example, environmental preferences (Weiss 
et al. 2016).

Bacterial communities are also influenced by the 
phytoplankton blooms and species composition (Riemann 
et al. 2000; Teeling et al. 2012; Klindworth et al. 2014; 
Sison-Mangus et al. 2016; Camarena-Gómez et al. 2018). 
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Bacteria belonging to Alpha- and Gammaproteobacteria, 
as well as to Flavobacteria are often dominant during 
the blooms (Buchan et al. 2014). Interestingly, in this 
study, an OTU associated with Marinobacter spp. was 
detected only once during the entire sampling season in 
2017 (n = 21). In a laboratory study, a strain belonging 
to this genus impeded the growth of a toxin-producing 
dinoflagellate species Karenia mikimotoi (Zheng et al. 
2018). At the same time, K. mikimotoi was not detected 
from the sample in which Marinobacter spp. was present 
although it was present in previous samples. In addition, 
by the same sampling date, the number of sequences 
associated with Gammaproteobacteria (class including 
Marinobacter spp.) had increased ≥ 10x compared to the 
previous week (435 to 7356 sequences/1% to 16% of the 
total sequence reads). Gammaproteobacteria have been 
reported to react later to the algal decay, with some species 
achieving their highest relative abundances two to four 
weeks after the peak of algal bloom (Teeling et al. 2012). 
Thus, the appearance of Marinobacter spp. might be 
related to the decay of an algal bloom possibly containing 
a high number of K. mikimotoi cells (hypothesised, based 
on sequence abundances, no cell count data available). 
This is further supported by a decrease in Chl a values 
(12.03 to 1.96 µg/l-1) coinciding with the decrease in 
K. mikimotoi sequence numbers. To confirm the growth-
limiting activity, metabarcoding and HTS data should 
be combined with laboratory experiments, for example, 
most-probable number technique, microcosm studies, 
isolation and identification of the bacteria displaying 
growth-limiting activities towards the HAB species (Imai 
et al. 1993; Nagai and Imai 1999; Kim et al. 2008; Inaba 
et al. 2017; Bigalke et al. 2019).

Another useful method to detect potential growth-
limiting bacteria is association rule-based time-series data 
analysis that also considers the time lag between the change 
in species abundances (Asano et al. 2019). In the present 
study, the method was tested with three phytoplankton 
genera and negative associations with bacteria were 
detected for all genera. Although further investigation and 
experiments are needed to confirm the negative influence 
of those bacteria are needed (e.g. Imai et al. 1995; Kim et 
al. 2008; Shi et al. 2018; Inaba et al. 2019), it provides a 
good indication of which bacteria to target. This is further 
exemplified by the decline in Skeletonema sp. one week 
after an increase in Synechococcus sp., based on sequence 
abundances. This coincides with the previously reported 
negative influence of Synechoccus sp. on Skeletonema 
sp. (S. marinoi) resulting in reduced growth rates, 
physical cell damage and a decline in photosynthetic 
capacity (Śliwińska-Wilczewska and Latała 2018; 
Śliwińska-Wilczewska et al. 2019). Thus, monitoring 
the increase of Synechococcus sp. by molecular tools 
could be used for forecasting the decline of Skeletonema 
sp. abundances. Identification of similar associations 
between bacteria and other HAB species may enable a 
near-real-time bloom forecasting system by combining 
molecular detection with hydrodynamical and ecological 

models (McGillicuddy 2010; Brown et al. 2013; Tian and 
Huang 2019).

Conclusions
A combination of light-microscopy-based monitoring 
with metabarcoding and the HTS approach allowed the 
detection of 40 HAB species from Tokyo Bay, including 
12 toxin-producing species previously not reported from 
the area. Metabarcoding and the HTS approach allowed 
detection of twice as many HAB-associated species than 
light-microscopy; however, four species were detected 
only based on morphology under LM. This indicates the 
importance of using several markers to account for the dif-
ferences in their identification power. Numerous statisti-
cally significant positive and negative associations could 
be detected amongst the HAB species, as well as amongst 
HAB, eukaryotic and prokaryotic species, including gen-
era containing growth-limiting bacteria. As the majority 
of significant correlations were between different OTUs in 
different years, the interactions between different species 
were probably more influenced by the variability in envi-
ronmental conditions between the years than within the 
sampling season. To understand the interactions between 
growth-limiting genera and microalgae, including HAB 
species, a further study combining time-series environmen-
tal monitoring by metabarcoding and the HTS approach 
and laboratory experiments are needed. The results of this 
study further confirm the applicability of metabarcoding 
and HTS-based microalgal monitoring, exemplified by the 
detection of several morphologically similar, small or frag-
ile species previously not reported from Tokyo Bay.
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