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Abstract
DNA metabarcoding has great potential to improve marine biomonitoring programs by providing a rapid and accurate assessment of 
species composition in zoobenthic communities. However, some methodological improvements are still required, especially regard-
ing failed detections, primers efficiency and incompleteness of databases. Here we assessed the efficiency of two different marker 
loci (COI and 18S) and three primer pairs in marine species detection through DNA metabarcoding of the macrozoobenthic commu-
nities colonizing three types of artificial substrates (slate, PVC and granite), sampled between 3 and 15 months of deployment. To 
accurately compare detection success between markers, we also compared the representativeness of the detected species in public 
databases and revised the reliability of the taxonomic assignments. Globally, we recorded extensive complementarity in the species 
detected by each marker, with 69% of the species exclusively detected by either 18S or COI. Individually, each of the three primer 
pairs recovered, at most, 52% of all species detected on the samples, showing also different abilities to amplify specific taxonomic 
groups. Most of the detected species have reliable reference sequences in their respective databases (82% for COI and 72% for 18S), 
meaning that when a species was detected by one marker and not by the other, it was most likely due to faulty amplification, and not 
by lack of matching sequences in the database. Overall, results showed the impact of marker and primer applied on species detection 
ability and indicated that, currently, if only a single marker or primer pair is employed in marine zoobenthos metabarcoding, a fair 
portion of the diversity may be overlooked.
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Introduction
DNA metabarcoding is the taxonomic identification of 
organisms present in a bulk or environmental sample 
through the use of DNA amplification of standard re-
gions of a genome (i.e. DNA barcodes) coupled with 
high-throughput sequencing (HTS) (Taberlet et al. 2012). 
DNA metabarcoding studies have been developed for di-
verse taxonomic groups (e.g. terrestrial arthropods: El-
brecht et al. 2019; freshwater macroinvertebrates: Bista et 
al. 2018; Giebner et al. 2020; meiofaunal organisms: Fais 

et al. 2020b; marine communities: Leray and Knowlton 
2015; Aylagas et al. 2018), using a wide range of labo-
ratory procedures (Andújar et al. 2018) and addressing 
questions about species richness, taxonomic composi-
tion, as well as biodiversity patterns (McGee et al. 2019; 
Piñol et al. 2019).

Metabarcoding allows for comparison across studies, 
however the harmonization and standardization of pro-
tocols is still far from being established (van der Loos 
and Nijland 2020; Duarte et al. 2021). While DNA-
based approaches for assessing and monitoring marine 
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macroinvertebrate species are constantly evolving (Andú-
jar et al. 2018), the diversity of the adopted methodolo-
gies, including the use of different primer pairs or molec-
ular markers, the lack of accurate and complete reference 
databases, and the continuous emergence of new sequenc-
ing innovations and bioinformatics pipelines, implies low 
standardization and comparability among studies (Cow-
art et al. 2015; Leray and Knowlton 2017), which remain 
important challenges that should be addressed.

Targeting marine species is especially challenging due 
to the broad taxonomic and phylogenetic composition of 
marine communities, and the choice of marker usually de-
pends on the target taxa. However, the balance between the 
range of taxonomic coverage and the taxonomic discrimi-
nation ability should be considered in the choice of target 
genomic region and/or primer pairs, since it may affect the 
number of species and the taxonomic groups detected (van 
der Loos and Nijland 2020). Initially, a fundamental and 
critical decision in a DNA metabarcoding study is centered 
on which genomic region should be targeted. The 5’ end 
of the mitochondrial cytochrome oxidase I gene (COI) is 
the standard barcode for animal life and the backbone of 
the universal Barcode of Life species identification sys-
tem (Hebert et al. 2003), being the recommend marker 
for community metabarcoding (Andújar et al. 2018) and 
by far the most well represented genomic region in pub-
lic databases (Porter and Hajibabaei 2020). After COI, the 
nuclear small subunit rRNA gene (18S) is among the most 
widely used markers in marine biodiversity studies (e.g. 
Lejzerowicz et al. 2015; Wangensteen et al. 2018; Zhang 
et al. 2018; Fais et al. 2020a; Duarte et al. 2021).

PCR-based methodologies are highly influenced by 
amplification biases thereby encouraging the use of sev-
eral primer pairs in different metabarcoding studies (Bista 
et al. 2018; Elbrecht et al. 2019; Hajibabaei et al. 2019; 
Porter and Hajibabaei 2020). Amplicon length, primer 
mismatches, GC content, and polymerase errors can also 
affect the ability to detect the species present in bulk or en-
vironmental samples, (Kebschull and Zador 2015; Piñol et 
al. 2015; Nichols et al. 2018; Derycke et al. 2020). Even 
broad-range primers (i.e. able to amplify a DNA fragment 
over a broad taxonomic scope) demonstrated more affin-
ity for some species and consequently do not perfectly 
match the DNA of all species present in a bulk sample. 
Low species detection ability has been associated with the 
use of non-degenerate primers (Clarke et al. 2014; Elbre-
cht et al. 2017; Collins et al. 2019), however, degenerate 
primers seem to have a higher capability to detect species 
compared with nondegenerate ones. The Leray-Geller 
fragment (mlCOIintF/jgHCO2198 – Leray et al. 2013, 
Geller et al. 2013) is a degenerate primer pair widely used 
in DNA metabarcoding studies targeting different types of 
taxa (Leray and Knowlton 2015; Clarke et al. 2017; Ran-
some et al. 2017; Aylagas et al. 2018), mostly due to their 
design for marine organisms with a wide phylogenetic 
coverage and fair amplicon length (313 bp). Yet, the in-
clusion of inosine bases in the reverse primer jgHCO2198 
may impair the performance of the most commonly used 

high-fidelity polymerases for generating amplicon librar-
ies for HTS (Knittel and Picard 1993, Jungbluth et al. 
2021). The combination of mlCOIintF with LoboR1 am-
plifies exactly the same fragment and with demonstrated 
success in the amplification of DNA barcodes of marine 
taxa (Haenel et al. 2017; Hollatz et al. 2017; Chang et al. 
2020; Castro et al. 2021). Primers amplifying the nucle-
ar genes (e.g. TAReuk454FWD1/TAReukREV3, Lejze-
rowicz et al. 2015) constitute alternatives to COI primers, 
mainly because of their slower rate of evolution which 
results in more conserved regions which may facilitate the 
design of primers. However, reference databases for 18S 
target regions are less populated than COI (Andújar et 
al. 2018) and COI-primers often outperform primers for 
rDNA loci on taxon recovery (Clarke et al. 2017; Elbrecht 
et al. 2017, 2019; Atienza et al. 2020) and species dis-
crimination ability (Tang et al. 2012; Clarke et al. 2017). 
Choosing the appropriate molecular markers and/or prim-
er pairs is a principal step to influence the quality of data 
through PCR amplification, to accurately and efficiently 
determine the taxonomic composition of the bulk sample 
and to assign a species level identification.

For DNA metabarcoding studies, multiple sets of 
primers amplifying different molecular markers have 
been used to target a broad range of taxonomic groups 
in different marine communities. However, the majority 
of studies used a single primer pair or single marker loci 
strategy (Duarte et al. 2021). In two studies which com-
prehensively review DNA metabarcoding studies over 
the last 10 years, the authors concluded that only a minor 
portion of the publications used more than one marker 
(25% in van der Loos and Nijland 2020; 24% in Duarte 
et al. 2021).

Although DNA metabarcoding studies aim to provide 
species level assignments (Taberlet et al. 2012), the ex-
istence of gaps in the reference sequence databases (Wei-
gand et al. 2019; Leite et al. 2020; Mugnai et al. 2021), 
associated with the limited species level discrimination 
ability of some markers (e.g. 18S rRNA; von Ammon 
et al. 2018) in some taxonomic groups, reduces the dis-
crimination level of taxonomic identifications. However, 
the trade-off between the range of taxonomic coverage 
(species successfully amplified) and the taxonomic dis-
crimination ability should be considered to enable accu-
rate identifications at lower taxonomic ranks (Porter and 
Hajibabaei 2020).

Considering the importance of choice of marker and 
primer to improve taxonomic coverage and discrimina-
tion of DNA metabarcoding, we investigated the impact 
of these factors on the composition and structure of ma-
rine macrozoobenthic communities. We selected two 
different primer pairs targeting COI and one targeting 
18S rDNA V4 region, to compare their ability to detect 
macroinvertebrates at species level and to evaluate the 
benefits of the use of two molecular markers on species 
recovery success. We also conducted an assessment of the 
availability of reference sequences for all species detect-
ed in the study, in order to compare the representativeness 
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of species, identifying the existence of gaps in both data-
bases (BOLD for COI and SILVA for 18S rRNA gene) 
and attempting to infer the reasons for failed detections.

Materials and methods

Sampling design

This study was conducted in Ría de Vigo, a semi-enclosed 
heavily human populated bay on the NW coast of Spain, 
constituted by important busy harbours and consequently 
affected by several human activities (e.g. sewage runoff or 
harvesting) (Veiga et al. 2016). This area includes both hard 
and soft substrata, which have a high primary productivity 
due to the influence of coastal seasonal upwelling-down-
welling dynamics, which lead the larvae recruitment process 
during spring and early summer (Prego and Fraga 1992).

In December 2016, four replicates (flat panels 10 
× 10  cm) of three different types of artificial sub-
strates – slate, polyvinyl chloride (PVC) and granite – 
were randomly deployed on the dock of Toralla Island 
(42°12'2.267"N, 8°48'4.187"W) approximately 1.5 m of 
depth (Suppl. material 1: Fig. S1). Using a sterile her-
metic plastic bag, after 3, 7, 10 and 15 months, one rep-
licate of each substrate was randomly removed. At the 
laboratory, the content of each bag with substrate plates 
was placed in a tray. Then, each sample was individually 
photographed and the representative mobile and sessile 
fauna were separated. Each sample was washed with fil-
tered sea water, and the mobile fauna was sieved using 
a 500 μm mesh. After collecting the mobile fauna, the 
sessile fauna was scraped with a spatula into a tray. The 
water of each tray was also sieved (500 μm mesh) and 
preserved with mobile fauna samples. Between samples, 
all materials were properly sterilized. All samples were 
then preserved in ethanol and stored at -20 °C until fur-
ther analysis.

DNA extraction, PCR amplification and HTS proce-
dures

We extracted the DNA from the bulk biomass using DNA 
extraction procedures adapted from Ivanova et al. (2006) 
silica-based method, as described in Steinke et al. (2021). 
The mobile and sessile fauna were processed separate-
ly, including amplification and sequencing. Ethanol pre-
served samples were first filtered to retain the biomass and 

the ethanol was discarded. The filtered biomass was left 
for four hours in the hotte to allow the ethanol to fully 
evaporate. Then, based on the wet weight of each sam-
ple (as suggested by Steinke et al. 2021), the appropriate 
volume of lysis buffer solution (100 mM NaCl, 50 mM 
Tris-HCl pH 8.0, 10 mM EDTA, 0.5% SDS) was added 
and the samples were incubated overnight at 56 °C gen-
tly mixed in an orbital shaker set. Negative controls were 
included in DNA extraction procedures and later checked 
together with the regular samples during DNA amplifica-
tion. To maximize diversity recovery, two aliquots of each 
lysate were used, totaling two DNA extractions per sam-
ple. After extraction, the aliquots of genomic DNA for the 
same sample were pooled before amplification and HTS.

The production of amplicon libraries and the HTS 
were carried out at Genoinseq (Cantanhede, Portugal). A 
preliminary assessment of primer amplification efficien-
cy of COI was conducted in a subset of samples to test 
four primer pairs that have been previously used in DNA 
metabarcoding studies (more details in Suppl. material 
1: Table S1 and Figs S2, S3). Together, the primer pairs 
mlCOIintF/LoboR1 and LCO1490/Ill_C_R recovered the 
highest species richness corresponding to more than 85% 
of the total detected species with COI (data in Suppl. ma-
terial 1). Therefore, these two primer pairs were selected, 
and combined with one primer pair targeting the 18S V4 
rRNA gene to amplify the marine macroinvertebrate com-
munities from each sample (Table 1). The 18S V4 primer 
(TAReuk454FWD1/TAReukREV3) was selected based 
on results obtained in other studies, in which different 18S 
primers were compared, and this primer had the best per-
formance (Fais et al. 2020b).

PCR reactions were performed using KAPA HIFI Hot-
Start PCR Kit for the COI primer pair without inosines 
(mlCOIintF/LoboR1) and for the 18S V4 region primer. 
PCR amplification reactions contained 0.3 µM of each 
primer and 50 ng of template DNA in the case of COI 
amplification and 12.5 ng for 18S V4 amplification, in 
a total volume of 25 µL. For the other COI primer pair 
(LCO1490/Ill_C_R), PCR reactions were performed us-
ing 1× Advantage 2 Polymerase Mix (Clontech, Moun-
tain View, CA, USA), 0.2 µM of each PCR primer and 
25 ng of DNA template in a total volume of 25 µL. Sec-
ond PCR reactions added indexes and sequencing adapt-
ers to both ends of the amplified target region (MiSeq 
Reagent Kit v3 – 600-cycle) according to manufacturer’s 
recommendations (Illumina 2013). PCR products were 
then one-step purified and normalized using SequalPrep 

Table 1. Primer pairs and respective thermal cycling conditions used in this study to amplify marine macroinvertebrate communi-
ties. F – forward; R – reverse; bp – base pairs.

Primer combinations and length Direction (5’-3’) Reference PCR thermal cycling conditions

COI

LCO1490/
Ill_C_R (325 bp)

(F) GGTCAACAAATCATAAAGATATTGG Folmer et al. 1994 (1) 94 °C (5 min); (2) 35 cycles: 94 °C (30 s), 52 °C 
(90 s), 68 °C (60 s); (3) 68 °C (10 min).(R) GGIGGRTAIACIGTTCAICC Shokralla et al. 2015

mlCOIintF/LoboR1 
(313 bp)

(F) GGWACWGGWTGAACWGTWTAYCCYCC Leray et al. 2013 (1) 95 °C (3 min); (2) 35 cycles: 98 °C (20 s), 60 °C 
(30 s), 72 °C (30 s); (3) 72 °C (5 min).(R) TAAACYTCWGGRTGWCCRAARAAYCA Lobo et al. 2013

18S TAReuk454FWD1/
TAReukREV3 (400 bp)

(F) CCAGCASCYGCGGTAATTCC Stoeck et al. 2010; 
Lejzerowicz et al. 2015

(1) 95 °C (3 min); (2) 10 cycles: 98 °C (20 s), 57 °C 
(30 s), 72 °C (30 s); (3) 25 cycles: 98 °C (20 s), 47 °C 

(30 s), 72 °C (30 s); (4) 72 °C (5 min).(R) ACTTTCGTTCTTGATYRA
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96-well plate kit (ThermoFisher Scientific, Waltham, 
USA) (Comeau et al. 2017), pooled and paired-end (2× 
300 bp) sequenced in an Illumina MiSeq sequencer with 
the V3 chemistry, according to manufacturer’s instruc-
tions (Illumina, San Diego, CA, USA).

Negative and positive controls were included in PCR 
amplification. As positive controls, we used a DNA ex-
tract previously tested successfully for PCR. Success of 
PCR amplification was checked by electrophoresis. No 
amplification was detected in any of the negative controls 
from DNA extraction or PCR.

Amplification failed with the primer mlCOIintF/Lob-
oR1 in the sample of mobile fauna of the granite substrate 
after 3 months of deployment and, consequently, was not 
considered for further analysis.

Data processing

Raw reads in fastq format generated by MiSeq sequenc-
ing were quality-filtered with PRINSEQ version 0.20.4 
(Schmieder and Edwards 2011). Sequencing adapters 
and reads with less than 100 bp (for the COI region) and 
with less than 150 bp (for the 18S V4 region) were re-
moved. Bases with an average quality lower than Q25 
in a sliding window of 5 bases were trimmed. Then, the 
filtered forward and reverse reads obtained were merged 
(make.contigs function, default alignment) by overlap-
ping paired-end reads in mothur 1.39.5 (Schloss et al. 
2009; Kozich et al. 2013), and primers were removed 
(trim.seqs function, default).

The usable reads were then processed in two pipe-
lines of public databases: a) COI reads were submitted to 
mBrave – Multiplex Barcode Research and Visualization 
Environment (www.mbrave.net; Ratnasingham 2019), 
using the sample batch function which is linked with 
BOLD (Ratnasingham and Hebert 2007); b) 18S reads 
were analyzed in SILVAngs database (https://ngs.arb-sil-
va.de/silvangs/; Quast et al. 2013).

In mBrave, since primer sequences were previous-
ly removed in mothur, only the trimming by length was 
applied (maximum 313 bp for mlCOIintF/LoboR1 and 
325  bp for LCO1490/Ill_C_R; minimum 150 bp) and 
only reads with minimum quality value (QV) higher than 
10 were kept. This filtering step allowed for a max of 25% 
nucleotides with <20 QV value and max 25% nucleotides 
with <10 QV value. Reads were then taxonomically as-
signed at species level using a 97% similarity threshold 
against BOLD database that includes several publicly 
available reference libraries for marine invertebrates of 
the northeast Atlantic (e.g. Hollatz et al. 2017; Leite et al. 
2020; Vieira et al. 2021).

Output fasta files produced in mothur for the 18S mark-
er were then processed by the amplicon analysis pipeline 
of the SILVA project (SILVAngs 1.4; Quast et al. 2013). 
Each read was aligned using the SILVA Incremental 
Aligner (SINA v1.2.10 for ARB SVN (revision 21008); 
Pruesse et al. 2012) against the SILVA SSU rRNA SEED 
and quality controlled (Quast et al. 2013). Reads shorter 

than 150 aligned nucleotides and reads with more than 
2% of ambiguities or homopolymers were excluded from 
further processing. Putative contaminations and artefacts, 
reads with a low alignment quality (50 alignment identi-
ty, 40 alignment score reported by SINA), were identi-
fied and excluded from downstream analysis. After these 
initial steps, identical reads were identified (dereplicat-
ed), the unique reads were clustered (OTUs), on a per 
sample basis, and the reference read of each OTU was 
classified. Dereplication and clustering was done using 
VSEARCH (version 2.15.1; https://github.com/torognes/
vsearch; Rognes et al. 2016) applying identity criteria 
of 1.00 and 0.99, respectively. The classification was 
performed by a local nucleotide BLAST search against 
the non-redundant version of the SILVA SSU Ref data-
set (release 138.1; http://www.arb-silva.de) using blastn 
(version 2.2.30+; http://blast.ncbi.nlm.nih.gov/Blast.cgi) 
with standard settings (Camacho et al. 2009). The clas-
sification of each OTU reference read was mapped onto 
all reads that were assigned to the respective OTU using 
a 99% similarity threshold. Reads without any classifica-
tion or reads with weak BLAST hits, where the function 
“(% sequence identity + % alignment coverage)/2” did 
not exceed the value of 99, remain unclassified. These 
reads were assigned to “No Taxonomic Match”.

For both markers, only reads with match at species 
level were used for further analysis, and taxonomic as-
signments with less than 8 sequences were discarded. 
Any read that matched to non-metazoan was also exclud-
ed. The validity of the species names was verified in the 
World Register of Marine Species (WoRMS) database 
(WoRMS Editorial Board 2021). The obtained reads were 
analyzed separately for mobile and sessile fauna samples, 
and then combined for data analysis.

Revision of the species’ matches accuracy and com-
parison of the representativeness of the detected spe-
cies in the two databases

Incongruences in genetic databases are an ongoing prob-
lem that can affect taxonomic assignments (Hleap et al. 
2021). Although some efforts have been developed to solve 
this issue (e.g. Fontes et al. 2021; Radulovici et al. 2021), 
incongruences still persist in genetic databases. To have a 
broad-range of representativeness and maximize results, the 
taxonomic assignment was made using the full genetic da-
tabases (i.e. BOLD and SILVA) and not a curated in-house 
reference library. However, the confidence and accuracy in 
the taxonomic assignments can be compromised. For that 
reason, we reviewed individually each species match to as-
sess the reliability of the taxonomic assignments. Discor-
dances were carefully inspected and if they were possible 
to resolve (e.g. synonyms, clear cases of misidentification), 
the most probable identification was kept.

We then assessed the presence of representative se-
quences of all the species detected in the present study in 
BOLD and SILVA. Failed detection by one marker may 
simply have occurred because that particular species was 

https://ngs.arb-silva.de/silvangs/
https://ngs.arb-silva.de/silvangs/
https://github.com/torognes/vsearch
https://github.com/torognes/vsearch
http://www.arb-silva.de
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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not present in the respective reference database. Howev-
er, if a species was present in both databases, but was 
only detected by one marker, that would be an indication 
of probable PCR amplification failure of the marker that 
failed detection. All the available COI sequences match-
ing the detected species names were mined from BOLD 
using BAGS (Fontes et al. 2021). To assess which species 
have representative sequences in SILVA, all the Animalia 
records were mined directly from the database (version 
138.1). A species was considered represented if at least 
one sequence was available.

Molecular markers comparison

The proportion of species with overlapping or exclusive 
detections by each primer pair and marker was deter-
mined for all substrates and sampling time combinations, 
using Venn diagrams (http://www.venndiagrams.net/). 
For each primer pair the distribution of species among 
high-rank taxonomic groups (e.g. order or phyla) was dis-
played through barplots (GraphPad Software, Inc.).

To identify clusters of data objects (species level 
identifications) in the dataset, the unsupervised machine 
learning k-means was applied, in the presence/absence 
matrix of the global species detected by primer pairs and 
markers, which groups the data without prior categories. 
The optimal number of clusters was determined with the 
elbow (fviz_nbclust, method = “wss” function) and sil-
houette (silhouette function) analysis. The analyses were 
performed (kmeans function) and visualized (fviz_clus-
ter function) in R with the packages “cluster” (Maechler 
et al. 2019), “factoextra” (Kassambara and Mundt 2020) 
and “stats” (R core team 2020) as default.

Results

Effect of marker and primer choice on species detection

High-throughput sequencing of marine macroinverte-
brate samples, for both markers and three primer pairs, 
generated a total of 2,956,328 raw reads. Following bio-
informatic processing, a total of 2,356,818 reads were re-
tained (Table 2). Of these, 55.6% were assigned to a ma-
rine macroinvertebrate species: 46.8% using mlCOIintF/
LoboR1, 36.6% with LCO1490/Ill_C_R and 16.6% with 
TAReuk454FWD1/TAReukREV3 (Suppl. material 2: Ta-
ble S2). Of the remaining reads, 0.1% were rare OTUs 
(<8 reads) and 44.3% could not be assigned to macrozoo-
benthic species or to a metazoan phylum.

From the three types of artificial substrates sampled at 
four different deployment periods (12 samples), the three 
primer pairs were able to identify a total of 161 species, 
distributed by 9 taxonomic groups: Annelida, Bryozoa, 
Crustacea, Echinodermata, Hydrozoa, Mollusca, Nemer-
tea, Platyhelminthes and Tunicata (species names and the 
associated taxonomic group displayed in Suppl. material 
2: Table S3). The number of species detected was similar 

between primer pairs, with the primer pair TAReuk454F-
WD1/TAReukREV3 (18S V4 region) retrieving a total 
of 77 species, whereas among the COI primer pairs, ml-
COIintF/LoboR1 allowed the detection of more species 
than LCO1490/Ill_C_R (84 species and 63 species, re-
spectively).

The applied primers also differed in their efficiency to 
recover particular taxonomic groups (Fig. 1). In the case 
of COI primer pairs, Crustacea, Mollusca and Annelida 
were the taxa with higher species diversity (77.3% for 
mlCOIintF/LoboR1 and 79.7% for LCO1490/Ill_C_R), 
while for TAReuk454FWD1/TAReukREV3 the most 
represented taxonomic groups were Annelida, Mollusca, 
Bryozoa and Hydrozoa (79% of the total detected taxa). 
Furthermore, whereas Tunicata and Platyhelminthes were 
only detected by 18S, Mollusca and Crustacea had more 
species identified with COI primers.

A higher species richness was detected consistently at 
seven months for all primer pairs in the three substrates. 
The species detected by each primer pair, and also the 
taxonomic groups, were different between primers and 
markers in the four sampling times and between sub-
strates (Suppl. material 1: Fig. S4).

If the combined number of detected species by the two 
COI primer pairs is used, the 18S V4 region retrieved less 
taxa than COI (77 species vs 107 species, respectively). 
Both elbow and silhouette analysis retrieved two as the 
optimal number of k (i.e. two clusters; Suppl. material 
1: Fig. S5). Two well segregated groups (Fig. 2) with no 
overlap were retrieved, one corresponding to the data be-
longing to COI and other to 18S detected species.

The two molecular markers and the three primer 
pairs used were highly complementary in their abili-
ty to detect marine macroinvertebrate species (Fig. 3). 
Among the detected species, only 8.1% were common 

Table 2. Total number of sequences generated in Illumina 
MiSeq high-throughput sequencing (raw reads), retained along 
processing steps of the bioinformatics pipeline (primers remov-
al, demultiplex and quality filter), and assigned to taxonomic 
groups for each primer pair (mlCOIintF/LoboR1; LCO1490/
Ill_C_R; TAReuk454FWD1/TAReukREV3).

 
Primer pairs

mlCOIintF/
LoboR1

LCO1490/
Ill_C_R

TAReuk454FWD1/
TAReukREV3

Raw reads 1110851 100,00% 945639 100,00% 899838 100,00%
First quality-filter* 953733 85,86% 808234 85,47% 594851 66,11%
After filtering** 953704 85,85% 798645 84,46% 581220 64,59%
Usable sequences*** 869015 78,23% 587794 62,16% 411782 45,76%

Metazoa 655097 68,69% 579857 61,32% 218416 24,27%
No taxonomic 
match**** 41641 3,75% 99367 10,51% 193366 21,49%

<8 
sequences***** 287 0,03% 281 0,03% 986 0,11%

Species level 
taxonomic 
assignment

613169 55,20% 480209 50,78% 217430 24,16%

* primers removal, demultiplex and quality filter.
** Filtered reads: rejected sequences based on length, presence of ambiguities and 
homopolymers, putative contaminations and artifacts.
*** Reads submitted for taxonomic assignment.
**** Reads without taxonomic classification at species level at ≥97% for COI primers 
and ≥99% for 18S V4.
*****Matches at species level, however, with <8 sequences per identification.

http://www.venndiagrams.net/
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to the three primer pairs and 68.9% were exclusively re-
covered by one primer: 21.7% for mlCOIinF/LoboR1, 
13.7% for LCO1490/Ill_C_R and 33.5% for TAReuk-
454FWD1/TAReukREV3. For COI-primers, Crustacea 
was the taxon with more species exclusively detected by 
mlCOIintF/LoboR1 (45.7% of the species), whereas for 
LCO1490/Ill_C_R was Mollusca (50% of the species). 
For the 18S primer pair, 65.5% of the exclusively detect-
ed species were Annelida (31.2%), Mollusca (14.8%) 
and Bryozoa (18.5%).

Availability of reference sequences on public databases

Considering a total of 161 marine macroinvertebrate spe-
cies detected combining together the results of 18S V4 
and the two COI primers, we evaluated the taxonomic 
coverage in the respective databases, namely mBrave for 
COI and SILVA for 18S V4. As much as 18% of the spe-
cies still lack representative sequences of COI and 28% 
of the V4 region of the 18S rRNA gene (Fig. 4). While 
Crustacea was the taxonomic group with the higher num-

Figure 1. Taxonomic profile of the marine macroinvertebrate species detected in the substrates by each primer pair.

Figure 2. Best fitting number of clusters (k=2) using the unsupervised machine learning k-means for the combined identifications 
of marine macrozoobenthic species using both COI-primers (COI – red) and the 18S-primer (18S – blue), in the three sampling 
times (3M – 3 months; 7M – 7 months; 10M – 10 months; 15M – 15 months) and the three artificial substrates (Sla – slate; PVC; 
Gra – granite).
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ber of missing sequences in SILVA (38% of the total 
crustacean species detected), in BOLD, Bryozoa was the 
group with more species missing COI sequences (42% of 
the total bryozoans species detected).

Since taxonomic assignment can be affected by incon-
gruences in genetic databases, a manual inspection of the 
taxonomic assignments may be advisable to more accu-
rately compare results. Overall, the fair majority of the 
species assignments (94%) appear to have a high level of 
certainty (Suppl. material 2: Table S3). There were only a 
minority of cases where species could not be confidently 
discriminated with currently available data (e.g. Turritop-
sis nutricula/T. dohrnii).

Discussion

DNA metabarcoding-based biomonitoring of aquatic 
communities would benefit from the establishment of 

standardized approaches (Blackman et al. 2019; Duarte 
et al. 2021; Gielings et al. 2021), which would enable 
direct inter-study comparisons, broader implementation 
and greater scientific gains. Choice of marker and primer 
pairs to employ is a critical decision in DNA metabarcod-
ing, that depends on the goals of the study, targeted com-
munities and aimed rank of taxonomic assignment (van 
der Loos and Nijland 2020; Duarte et al. 2021). Although 
criteria of choice such as practical efficiency and cost-ef-
fectiveness would favor finding the “best” single primer 
pair that fits a particular study, our results indicated that, 
when the goal is to assess as comprehensively as possi-
ble the species composition of a marine macrozoobenthic 
sample, the ideal primer pair may be hard to find. Both 
biased primer affinity for the DNA templates and gaps in 
species representativeness in reference databases appear 
to concur for this difficulty.

Together, the three primer pairs used in this study en-
abled the detection of a fair number of macrozoobenthic 

Figure 3. Partitioning of the marine macroinvertebrate species detection for (A) both marker loci and (B) primer pair, in the three 
substrate types and among all sampling times.

A B

Figure 4. Availability of reference sequences of COI and 18S V4 for each taxonomic group of marine macroinvertebrate species 
detected with the three primer pairs from COI and 18S genes. Barcode coverage with at least one sequence per species (black bar).
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species. Quantitatively, the 18S V4 region and the two 
COI primer pairs displayed similar ability to detect marine 
macroinvertebrate species. However, considering the high 
complementarity in the species recovered between these 
markers, the choice of the best performing primer was not 
obvious. Similar COI – 18S comparisons described in the 
literature report somewhat distinct and even contradictory 
results. For example, DNA metabarcoding studies using 
mock zooplankton communities demonstrated different 
taxonomic recovery ability between COI and 18S: where-
as one of the studies detected similar patterns of species 
detection ability among markers (Clarke et al. 2017), the 
other reported higher detection efficiency with 18S V4 re-
gion than with COI, and with higher levels of overlapping 
between markers (Zhang et al. 2018). Contrary to these 
results, in a study using marine hard-bottom communities 
the authors showed that using COI (Leray-XT) they were 
able to recover four times more diversity than using 18S 
region (V7) (Wangensteen et al. 2018). However, a direct 
comparison with our study is limited given the employ-
ment of different primers, reference libraries and thresh-
olds. The differences obtained for the 18S V4 region in 
assignment for some taxonomic groups could be related 
to more conserved sequences in priming regions (Tang et 
al. 2012; Brown et al. 2015). In addition, taxonomic dis-
crimination efficiency of the targeted marker loci, possi-
ble mismatches between primer and DNA template or dif-
ficulties in primer affinity for specific taxa can be possible 
reasons for the obtained differences between primers and 
marker region in amplification efficiency.

The significant complementarity observed between the 
two molecular markers, with each single marker capturing 
at the very best approximately 66% of the detected species 
in a sample, revealed that, by using only one marker, a fair 
portion of the marine macroinvertebrate species may fail 
detection. Both markers detected different communities, 
raising high concerns for monitoring studies, since the 
biodiversity detected will be different and many species 
may be overlooked due to methodological steps only. For 
example, while isopods were only detected by COI, plat-
yhelminthes and tunicates were exclusively detected by 
18S V4. Although few metabarcoding studies compared 
the performance of molecular markers on species recovery 
(Dowle et al. 2015; Drummond et al. 2015), our results are 
generally consistent with previous findings in marine in-
vertebrate communities (Wangensteen et al. 2018), where 
high levels of complementarity at species level between 
these markers were reported. Since our goal is to capture 
the widest possible diversity of macrozoobenthic species, 
compared to using a single molecular marker, the combi-
nation of a multi-locus strategy improves the number of 
retrieved species, which we recommend as the best prac-
tice to be used in marine macroinvertebrates assessments.

Regarding the two primer pairs from the COI barcode 
region, although we observed a similar number of spe-
cies globally detected by each primer (84 vs 63 species), 
they diverge qualitatively in the species detected (41% of 
the species exclusively detected with mlCOIintF/LoboR 
and 21% in LCO1490/Ill_C_R), hence this should be the 

main criteria to consider in order to maximize the scope of 
species detection. The efficiency of different COI-primers 
in macroinvertebrates assessment has been already com-
pared in previous studies (Hollatz et al. 2017; Lobo et al. 
2017; Ip et al. 2019; Derycke et al. 2020), however not al-
ways reaching the same conclusions. Different methodol-
ogies adopted in different studies may explain the discrep-
ancies in the results (e.g.: PCR thermal cycling regimes, 
sequencing depths, informatics platforms, clustering and 
threshold values, reference libraries). Our results empha-
size that using a single primer pair for the COI region will 
result in a fair amount of undetected diversity of marine 
zoobenthic taxa. Therefore, we suggest the simultaneous 
employment of at least two primer pairs to improve the 
efficiency of the taxonomic diversity recovery.

The three primer pairs used in this study were able to 
detect marine macroinvertebrate species in every sampling 
time, all of them consistently pointing to a higher species di-
versity after seven months of deployment of the substrates. 
These results highlight the benefit of the application of a 
multiple primer pair and multi-locus strategy for ecological 
assessments of marine species, since if we had only used 
one primer pair or marker we would have failed to detect 
important macrobenthic taxa, and the taxonomic composi-
tion of the community could emerge substantially different. 
Temporal and seasonal changes in a community could affect 
the potential of DNA-based species monitoring, especially 
when methodological bias originated by amplification pro-
cedures (choice of marker loci and primer pairs) could in-
fluence ecological interpretations (Clarke et al. 2017).

We performed an assessment of the availability of repre-
sentative sequences for all species detected in this study in 
each of the reference databases employed, namely BOLD 
and SILVA, respectively for COI and 18S V4 markers. This 
enabled us to verify if the detection of a species by one 
marker, and not by the other, could be attributed to gaps in 
the library of the latter or, if no gap was found, it could be 
ascribed to faulty amplification. A sizable but minor pro-
portion of gaps was recorded for both markers (18% for 
COI and 28% for 18S V4). The incompleteness, and possi-
ble inaccuracies of databases may explain some of the spe-
cies detected exclusively by one marker, as for example, 
the flatworm Vorticeros auriculatum, a species detected by 
18S V4 that does not have representatives in BOLD. On 
other hand, some of the detected species with reference se-
quences in both databases were only detected by one mark-
er (e.g. the tunicate Asterocarpa humilis, undetected with 
COI despite having representative sequences in BOLD). 
Considering the complete 18S rRNA gene, the target re-
gion we selected should not be the main reason for failed 
detections, since V4 is reported to have high amplification 
success (Brown et al. 2015; Lejzerowicz et al. 2015; Zhang 
et al. 2018) and demonstrated to have a better performance 
on taxonomic assignments than other 18S regions (Fais et 
al. 2020b). However, since these primers failed to detect 
some species, this was probably due to faulty amplification 
or reduced resolution of taxonomic assignments. Indeed, 
although COI-based monitoring approaches may claim 
the advantage of having a verified and dedicated database 
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for a large variety of taxa (Porter and Hajibabaei 2020), 
several studies already reported the existence of significant 
gaps in reference libraries particularly for dominant marine 
macrobenthic taxa (Weigand et al. 2019: 20% to 30% of 
completion of databases for dominant groups, i.e. Anne-
lida, Mollusca and Arthropoda), including for the region 
that comprised the geographic area of the current study 
(Leite et al. 2020: 49% for Mollusca, 53% for Crustacea 
and 16% for Polychaeta). Hence, although the availability 
of sequences or reference libraries does not appear to have 
been the main factor affecting species detection, it revealed 
that more investment should be allocated to obtain reliable 
reference sequences to enhance species assignment accu-
racy, in order to recover the taxonomic composition of a 
target community as complete as possible.

Globally, these results highlight the influence of mark-
er and primer pair complementarity on the ability to re-
cord marine macrozoobenthic species through metabar-
coding. For future high-throughput assessments using 
DNA metabarcoding approaches, we recommend com-
bining molecular markers and, if possible, multiple prim-
er pairs, to increase the power of species detections and 
the accuracy of biodiversity assessments, thereby yield-
ing more comprehensive and reliable results for marine 
macroinvertebrate monitoring.
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