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Abstract
The mitochondrial cytochrome C oxidase subunit I gene (COI) is commonly used in environmental DNA (eDNA) metabarcod-
ing studies, especially for assessing metazoan diversity. Yet, a great number of COI operational taxonomic units (OTUs) or/and 
amplicon sequence variants (ASVs) retrieved from such studies do not get a taxonomic assignment with a reference sequence. To 
assess and investigate such sequences, we have developed the Dark mAtteR iNvestigator (DARN) software tool. For this purpose, 
a reference COI-oriented phylogenetic tree was built from 1,593 consensus sequences covering all the three domains of life. With 
respect to eukaryotes, consensus sequences at the family level were constructed from 183,330 sequences retrieved from the Midori 
reference 2 database, which represented 70% of the initial number of reference sequences. Similarly, sequences from 431 bacterial 
and 15 archaeal taxa at the family level (29% and 1% of the initial number of reference sequences respectively) were retrieved 
from the BOLD and the PFam databases. DARN makes use of this phylogenetic tree to investigate COI pre-processed sequences of 
amplicon samples to provide both a tabular and a graphical overview of their phylogenetic assignments. To evaluate DARN, both 
environmental and bulk metabarcoding samples from different aquatic environments using various primer sets were analysed. We 
demonstrate that a large proportion of non-target prokaryotic organisms, such as bacteria and archaea, are also amplified in eDNA 
samples and we suggest prokaryotic COI sequences to be included in the reference databases used for the taxonomy assignment to 
allow for further analyses of dark matter. DARN source code is available on GitHub at https://github.com/hariszaf/darn and as a 
Docker image at https://hub.docker.com/r/hariszaf/darn.
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Author summary

DARN is a software approach aiming to provide further 
insight into COI amplicon data of environmental sam-
ples. Building a COI-oriented reference phylogenetic 
tree is a challenging task especially considering the small 
number of microbial curated COI sequences deposited 
in reference databases; e.g. ~4,000 bacterial and ~150 
archaeal sequences in BOLD. Inevitably, as more and 
more such sequences are collated, the DARN approach 
improves. To provide a more interactive way of commu-

nicating both our approach and our results, we strongly 
suggest the reader to visit this Google Collab notebook 
where the building of the reference COI phylogenetic tree 
is described step-by-step and also this GitHub pages site 
where our results are demonstrated. Our approach cor-
roborates the known presence of microbial sequences in 
COI environmental sequencing samples and highlights 
the need for curated bacterial and archaeal COI sequences 
and their integration into reference databases (i.e., Midori, 
BOLD etc). We argue that DARN will benefit research-
ers as a quality control tool for their sequenced samples 
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in terms of distinguishing eukaryotic from non-eukary-
otic OTUs/ASVs, but also in terms of understanding the 
known unknowns. As the cover ratio of COI sequences 
of the known taxa increases, approaches such as the one 
used in this study, will also enable the identification/pre-
diction of unknown unknowns.

Introduction

Metabarcoding: concept and caveats

DNA metabarcoding is a rapidly evolving method that 
is being more frequently employed in a range of fields, 
such as biodiversity, biomonitoring, molecular ecology 
and others (Deiner et al. 2017; Ruppert et al. 2019). Envi-
ronmental DNA (eDNA) metabarcoding, targeting DNA 
directly isolated from environmental samples (e.g., water, 
soil or sediment, (Taberlet et al. 2012a)), is considered 
a holistic approach (Stat et al. 2017) in terms of biodi-
versity assessment, providing high detection capacity. At 
the same time, it allows wide-scale rapid bio-assessment 
(Stat et al. 2017) at a relatively low cost as compared to 
traditional biodiversity survey methods (Ji et al. 2013).

The underlying idea of the method is to take advan-
tage of genetic markers, i.e. marker loci, using primers 
anchored in conserved regions. These universal markers 
should have enough sequence variability to allow dis-
tinction among related taxa and be flanked by conserved 
regions allowing for universal or semi-universal primer 
design (Deagle et al. 2014). In the case of eukaryotes, 
the target is most commonly mitochondrial due to high-
er copy numbers than nuclear DNA and the potential for 
species level identification. Furthermore, mitochondria 
are nearly universally present in eukaryotic organisms, 
especially in case of metazoa, and can be easily se-
quenced and used for identification of the species compo-
sition of a sample (Taberlet et al. 2012b). However, it is 
essential that comprehensive public databases containing 
well curated, up-to-date sequences from voucher speci-
mens are available (Schenekar et al. 2020). This way, se-
quences generated by universal primers can be compared 
with the ones in reference databases, assessing sample 
OTU composition. The taxonomy assignment step of the 
eDNA metabarcoding method and thus, the identification 
via DNA-barcoding, is only as good and accurate as the 
reference databases (Cilleros et al. 2019).

Nevertheless, there is not a truly “universal” genetic 
marker that is capable of being amplified for all species 
across different taxa (Kress et al. 2015). Different markers 
have been used for different taxonomic groups (Deiner et 
al. 2017). While bacterial and archaeal diversity is often 
based on the 16S rRNA gene, for eukaryotes a diverse set 
of loci is used from the analogous eukaryotic rRNA gene 
array (e.g., ITS, 18S or 28S rRNA), chloroplast genes 
(for plants) and mitochondrial DNA (for eukaryotes) in 
an attempt for species – specific resolution (Coissac et al. 
2012). The mitochondrial cytochrome c oxidase subunit 

I (COI) marker gene has been widely used for the bar-
coding of the Animalia kingdom for almost two decades 
(Hebert et al. 2003). There are cases where COI has been 
the standard marker for metabarcoding, such as in the as-
sessment of freshwater macroinvertebrates (Elbrecht and 
Leese 2017) even though not all taxonomic groups can be 
differentiated to the species level using this locus (Deiner 
et al. 2017); for example, in case of fish other loci are 
widely used such as 12S rRNA gene (hereafter referred to 
as 12S rRNA) (Miya et al. 2020).

The COI locus

The mitochondrial cytochrome c oxidase subunit I (also 
called cox1 or/and COI) is a gene fragment of ~700 bp, 
widely used for metazoan diversity assessment. Here we 
present some of the reasons that microbial eukaryotes and 
prokaryotes are also amplified in such studies, raising the 
issue of the known unknown sequences.

COI is a fundamental part of the heme aa3-type mi-
tochondrial cytochrome c oxidase complex: the terminal 
electron acceptor in the respiratory chain. Even if aa3-
type Cox have been found in bacteria, there are also 
other cytochrome c oxidase (Cox) groups, such as the 
cbb3-type cytochrome c oxidases (cbb3-Cox) and the cy-
tochrome ba3 (Ekici et al. 2012; Schimo et al. 2017).

Furthermore, the presence of highly divergent nucle-
ar mitochondrial pseudogenes (numts) has been a widely 
known issue on the use of COI in barcoding and metabar-
coding studies, leading to overestimates of the number 
of taxa present in a sample (Song et al. 2008). Numts 
are nonfunctional copies of mtDNA in the nucleus that 
have been found in major clades of eukaryotic organisms 
(Bensasson et al. 2001).

Thus, as Mioduchowska et al. (2018) highlight, when 
universal primers are used targeting the COI locus, it is 
possible to co-amplify both non-target numts and prokar-
yotes (Siddall et al. 2009). This has led to multiple er-
roneous DNA barcoding cases and it is now not rare to 
encounter bacterial sequences described as metazoan in 
databases such as GenBank (Mioduchowska et al. 2018).

Even though there are various known issues (Dea-
gle et al. 2014), COI is indeed considered as the “gold 
standard” for community DNA metabarcoding of bulk 
metazoan samples (Andújar et al. 2018); bulk is an en-
vironmental sample containing mainly organisms from 
the taxonomic group under study providing high quali-
ty and quantity of DNA (Taberlet et al. 2018). However, 
as highlighted in the same study, this is not the case for 
eDNA samples. As Stat et al. (2017) state, in the case of 
eDNA samples, the target region for metazoa is found in 
general at considerably lower concentrations compared 
to those from prokaryotes because most primers targeting 
the COI region amplify large proportions of prokaryotes 
at the same time (Yang et al. 2013, 2014; Collins et al. 
2019). Cold-adapted marine gammaproteobacteria are an 
indicative example for this case as shown by Siddall et 
al. (2009).
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Our contribution

The co-amplification of prokaryotes explained above, is a 
major reason for why many Operational Taxonomic Units 
(OTUs) and/or Amplicon Sequence Variants (ASVs) in 
eDNA metabarcoding studies cannot get taxonomy as-
signments when metazoan reference databases are used 
(c.f. Aylagas et al. 2016) or they are assigned to metazoan 
taxa but with very low confidence estimates. Despite the 
presence of such OTUs/ASVs to a varying degree in me-
tabarcoding studies using the COI marker gene (Siddall et 
al. 2009), to the best of our knowledge, there has not been 
a thorough investigation of the origin for these sequences. 
Although unassignable sequences could be informative, 
there have been few attempts to further investigate this 
dark matter (e.g., Sinniger et al. 2016; Haenel et al. 2017).

The aim of this study was to build a framework for 
extracting such non-target, potentially unassigned (or 
assigned with low confidence) sequences from COI en-
vironmental sequence samples, hereafter referred to as 
“dark matter” as per Bernard et al. (2018). We argue that 
the vast majority of these sequences represent microbial 
taxa, such as bacteria and archaea.

More specifically, based on the previously described 
methodology by Barbera et al. (2019) (see also full stack 
example of the EPA-ng algorithm) for large-scale phy-
logenetic placements, we built a framework to estimate to 
what extent the OTUs/ASVs retrieved in an environmen-
tal sample represent target taxa or not. That is, to evaluate 
the taxonomy assignment step in a metabarcoding analy-
sis, by checking the phylogenetic placement of dark mat-
ter sequences. Similar studies have provided great insight 
into other marker genes, e.g. Jamy et al. (2020).

Implementation

Building the COI tree of life

Sequences for the COI region from all the three domains 
of life were retrieved from curated databases. Eukary-
otic sequences were retrieved from the Midori reference 
2 database (version: GB239) (Machida et al. 2017). Ini-
tially, 1,315,378 sequences were retrieved corresponding 
to 183,330 unique species from all eukaryotic taxa. With 
respect to bacteria and archaea, 3,917 bacterial COI se-
quences were obtained from the BOLD database (Ratnas-
ingham and Hebert 2007). Similarly, 117 sequences from 
archaea were obtained from BOLD. In addition, for all 
the PFam protein sequences related to the accession num-
ber for COX1 (PF00115), the respective DNA sequences 
were extracted from their corresponding genomes. This 
way, an additional 217 archaeal and 9,154 bacterial se-
quences were obtained (see Table 1). In total, sequences 
from 15 archaeal, 371 bacterial families and 60 taxonom-
ic groups of higher level not assigned in the family level, 
were gathered. An overview of the approach that was fol-
lowed is presented in Figure 1.

The large number of obtained sequences effectively 
prevents a phylogenetic tree construction encompassing 
their total number in terms of building a single phyloge-
netic tree covering all of the three domains of life (archaea, 
bacteria, eukaryota). Therefore, consensus representative 
sequences from each of the three datasets were construct-
ed using the PhAT algorithm (Czech et al. 2019); based on 
the entropy of a set of sequences, PhAT groups sequences 
into a given target number of groups so they reflect the di-
versity of all the sequences in the dataset. As PhAT uses a 
multiple sequence alignment (MSA) as input, all the three 
domain-specific datasets were aligned using the MAFFT 
alignment software tool v7.453 (Katoh et al. 2002).

In the case of Eukaryotes, the alignment of the corre-
sponding sequences would be impractically long because 
of their large number (~183K sequences). To address this 
challenge, a two-step procedure was followed; a sequence 
subset of 500 sequences (reference set) was selected and 
aligned and then used as a backbone for the alignment of 
all the remaining eukaryotic COI sequences. All sequenc-
es were considered reliable as they were retrieved from 
curated databases (Midori2 and BOLD). To build the ref-
erence set, a number (n) of the longest sequences from 
each of the various phyla were chosen, proportionally to 
the number (m) of sequences of each phylum (see Suppl. 
material 1: Table S1). The --min-tax-level parameter of 
the PhAT algorithm corresponded to the class level, for 
the case of eukaryotes and to the family level for archaea 
and bacteria. This parameter forced the PhAT algorithm 
to build at least one consensus sequence for each class 
and family respectively. The taxonomy level was not the 
same for the case of eukaryotes sequence dataset and 
those of bacteria and archaea, as the number of unique eu-
karyotic families was one order of magnitude higher. The 
PhAT algorithm was invoked through the gappa v0.6.1 
collection of algorithms (Czech et al. 2020).

A total of 1,109 consensus sequences (70% of total 
consensus sequences) were built covering the eukaryot-
ic taxa, while 463 (29%) bacterial and 21 (1%) archaeal 
consensus sequences were included. The per-domain, 
consensus sequences returned can be found under the 
consensus_seqs directory on the GitHub repository 
(see _consensus.fasta files). These sequences were then 
merged as a single dataset and aligned to build a refer-
ence MSA; this time MAFFT was set to return using the 
--globalpair algorithm and the --maxiterate parameter 
equal to 1,000. The MSA returned was then trimmed with 
the ClipKIT software package (Steenwyk et al. 2020) to 
keep only phylogenetically informative sites. The final 
MSA is available on GitHub, see trimmed_all_consen-
sus_aligned_adjust_dir.aln.

Table 1. Number of sequences and taxonomic species per do-
main of life and resources. The (#) symbols stands for “number”.

Resources bacteria archaea
# of sequences # of strains # of sequences # of strains

BOLD 3,917 2,267 117 117
PFam-oriented 9,154 4,532 217 115
Total unique entries 11,421 6,798 334 201
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Figure 1. Overview of the approach followed to build the COI reference tree of life. Sequences were retrieved from Midori 2 
(eukaryotes) and BOLD (bacteria and archaea) repositories. Consensus sequences at the family level were built for each domain 
specific dataset. MAFFT and consensus sequences at the family level were built using the PhAT algorithm. The COI reference tree 
was finally built using IQ-TREE2. Noun project icons by Arthur Slain and A. Beale.
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The reference tree was then built based on this trimmed 
MSA using the IQ-TREE2 software (Hoang et al. 2018; 
Minh et al. 2020). ModelFinder was invoked through IQ-
TREE2 and the GTR+F+R10 model was chosen based 
on the Bayesian Information Criterion (BIC) among 
286 models that were tested. The phylogenetic tree was 
then built using 1,000 bootstrap replicates (-B 1,000) 
and 1,000 bootstrap replicates for Shimodaira–Haseg-
awa-like approximate likelihood ratio test (SH-aLRT) 
(-alrt 1000).

In the .iqtree file there are the branch support values; 
SH-aLRT support (%) / ultrafast bootstrap support (%).

A thorough description of all the implementation steps 
for building the reference tree is presented in this Goog-
le Collab Notebook. The computational resources of the 
IMBBC High Performance Computing system, called 
Zorba (Zafeiropoulos et al. 2021), were exploited to ad-
dress the needs of the tasks.

Investigating COI dark matter

The COI reference tree was subsequently used to build 
and implement the Dark mAtteR iNvestigator (DARN) 
software tool. DARN uses a .fasta file with DNA se-
quences as input and returns an overview of sequence 
assignments per domain (eukaryotes, bacteria, archaea) 
after placing the query sequences of the sample on the 
branches of the reference tree. Sequences that are not as-
signed to a domain are grouped as “distant”. It is neces-
sary for the input sequences to represent the proper strand 
of the locus, i.e. input reads should have forward orienta-
tion. Optionally, DARN invokes the orient module of the 
vsearch package (Rognes et al. 2016) to implement this 
step, in case the user is not sure about the orientation of 
the sequences to be analysed.

The focal query sequences are aligned with respect 
to the reference MSA using the PaPaRa 2.0 algorithm 
(Berger and Stamatakis 2012). The query sequences are 
then split to build a discrete query MSA. Finally, the 
Evolutionary Placement Algorithm EPA-ng (Barbera et 
al. 2019) is used to assign the query sequences to the ref-
erence tree.

To visualise the query sequence assignments, a two-
step method was developed. First, DARN invokes the 
gappa examine assign tool which taxonomically assigns 
placed query sequences by making use of the likelihood 
weight ratio (LWR) that was assigned to this exact tax-
onomic path. In the DARN framework, by making use 
of the --per-query-results and --best-hit flags, the gappa 
assign software assigns the LWR of each placement of 
the query sequences to a taxonomic rank that was built 
based on the taxonomies included in the reference tree. 
The first flag ensures that the gappa assign tool will re-
turn a tabular file containing one assignment profile per 
input query while the latter will only return the assign-
ment with the highest LWR. DARN automatically pars-
es this output of gappa assign to build two input Krona 
profile files based on a) the LWR values of each query 

sequence and b) an adjustive approach where all the best 
hits get the same value in a binary approach (presence 
- absence). In the final_outcome directory that DARN 
creates, two .html files, one for each of the Krona plots; 
Krona plots are built using the ktImportText command of 
KronaTools (Ondov et al. 2011). In addition four .fasta 
files are generated including the sequences of the sample 
that have been assigned to each domain or as “distant”. 
A .json file with the metadata of the analysis is also re-
turned including the identities of the sequences assigned 
to each domain.

DARN also runs the gappa assign tool with the 
--per-query-results flag only. This way, the user can have 
a thorough overview of each sample’s sequence assign-
ments, as a sequence may be assigned to more than one 
branch of the reference tree, sometimes even to different 
domains. However, in cases with sequences assigned to 
multiple branches, the likelihood scores are most typical-
ly up to 100-fold to 1000-fold different.

DARN source code as well as all data sequences and 
scripts for building the reference phylogenetic tree are 
available on GitHub.

Tree and software evaluation

Evaluation of the phylogenetic tree

The inferred phylogenetic tree is shown in Figure 2, 
with the bacterial (light blue) and archaeal (dark green) 
branches highlighted; in Suppl. material 3: Fig. S1 the 
distribution of the eukaryotic phyla on the tree is pre-
sented. As shown, bacteria and archaea can be distin-
guished from eukaryotes. Scattered bacterial branches 
that are present among eukaryotic ones represent the 

Figure 2. Phylogenetic tree of the consensus sequences retrieved; 
the tree that DARN makes use of. Light blue: bacterial branches. 
Dark green: archaeal branches. White: eukaryotic branches.
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diversity of the COI locus. To evaluate the phyloge-
netic tree, the set of consensus sequences were placed 
on it using the EPA-ng algorithm. The placements (see 
.jplace through a phylogenetic tree viewer, e.g. iTOL) 
verified that the phylogenetic tree built is valid, as the 
consensus sequences have been placed in their corre-
sponding taxonomic branches (Suppl. material 4: Fig. 
S2; the figure was built using the heat-tree module of the 
gappa examine tool).

DARN using mock community data

To examine whether the phylogenetic-based taxonomy 
assignment addresses a real-world issue, a local blast da-
tabase was built using the total number of the consensus 
sequences retrieved. As expected, when the consensus se-
quences were blasted against this local blastdb, all were 
matched with their corresponding sequences. However, 
when a mock dataset was used to evaluate the two ap-
proaches (blastdb and the phylogenetic tree) none of the 
bacterial sequences were captured as bacteria after blastn 
against the local blastdb (see output file here). All bacteri-
al sequences returned an incorrect eukaryotic assignment. 
Contrarily, when the phylogenetic tree was used, all the 
bacterial sequences were captured.

DARN using real community data

To evaluate DARN on the presence of dark matter we an-
alysed a wide range of cases to show the ability of DARN 
to detect and estimate dark matter under various condi-
tions. Both eDNA and bulk samples, from marine, lotic 
and lentic environments, were selected to reflect various 
combinations of primer and amplicon lengths, PCR pro-
tocols and bioinformatics analyses (Table 2).

More specifically, 57 marine, surface water, eDNA sam-
ples from Ireland were analysed through a. QIIME2 (Bol-
yen et al. 2018) and DADA2 (Callahan et al. 2016) and, 
b. PEMA (Zafeiropoulos et al. 2020). Similarly, 18 man-
grove and 18 reef marine eDNA samples from Honduras, 
were analyzed using a. JAMP v0.74 (Elbrecht 2021) and 
DnoisE (Antich et al. 2021) and b. PEMA. Furthermore, a 
sediment sample and two samples from Autonomous Reef 
Monitoring Structures (ARMS) one conserved in DMSO 
and another in ethanol from the Obst et al. (2020) dataset 
were analysed using PEMA. In addition, one lotic and two 
lentic samples from Norway were analysed using PEMA. 
For the case of the lentic samples, multiple parameter sets 
regarding the ASVs inference step were implemented; i.e 
the d parameter of the Swarm v2 (Mahé et al. 2015) that 
PEMA invokes was set equal to 2 and 10 to cover a great 

Table 2. DARN outcome over the samples or set of samples. Assignment fractions of the sequences per domain per sample in the 
DARN results over the samples.

Sample(s) 
accession 
number

Envo type Sample 
type Primer set

Amplicon 
length 
(bp)

Preservation 
method

Annealing 
temperature 

Bioinfo 
pipeline(s)

# of 
ASVs

~ % of sequence assignments per domain 
(if PEMA, using d = 10) 

Eukaryotes Bacteria Archaea distant

ERS6449795–
ERS6449829 marine eDNA

multiplex: 
jgHCO2198 - 

jgLCO1490 and 
LoboF1 - LoboR1

658

water stored 
at 4 °C / 

filtered within 
24 hours

60 °C × 35 
cycles

QIIME2 - 
Dada2 13,376 11.0 88.0 0.02 0.003

PEMA 
(d = 10) 39,454 25.0 75.0 0.1 0.4

ERS6463899–
ERS6463901

marine 
reef

eDNA mlCOIintF - 
jgHCO2198 313

filters stored 
with silica 

beads

46 °C × 35 
cycles

JAMP

1,304 35.0 65.0 0.0 0.2
dada2
PEAR
vsearch
DnoisE

PEMA 
(d = 10) 11,545 46.0 50.0 1.0 3.0

ERS6463906–
ERS6463911
ERS6463913–
ERS6463918
ERS6463920–
ERS6463922

ERS6463744–
ERS6463761

marine 
mangrove

JAMP

663 40.0 60.0 - 0.6
dada2
PEAR
vsearch
DnoisE
PEMA 

(d = 10) 5,879 49.0 47.0 1.0 2.0

ERR3460466 marine bulk
mlCOIintF - 
jgHCO2198 313

DMSO / 
-20 °C

62 °C (-1 °C/
cycle) × 16 
cycles and 
46 °C × 24 

cycles

PEMA 
(d = 2)

193 99.0 1.0 - -

ERR3460467 marine bulk ETOH / 
-20 °C 74 97.0 0.0 - 3.0

ERR3460470 marine eDNA -20 °C 184 71.0 28.0 0.0 1.0
ERS6488992 lentic

eDNA fwhF2 - EPTDr2 142 ATL-buffer

60 °C × 6 
cycles and 
48 °C × 26 

cycles

PEMA 
(d = 10)

416 85.0 7.0 3.0 5.0
ERS6488993 lentic 315 99.2 0.4 0.4 -

ERS6488994 lentic 823 90.0 4.0 2.0 4.0

ERS6488995 lotic eDNA BF3 - BR2 458 ATL-buffer 50 °C × 35 
cycles

PEMA 
(d = 10) 1,940 64.0 34.0 2.0 0.3

http://www.ncbi.nlm.nih.gov/nuccore/ERS6488995
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range of different cases (Kamenova 2020). DARN was 
then executed using the ASVs retrieved in each case as in-
put. All the DARN analyses and the PEMA runs were per-
formed on an Intel(R) Xeon(R) CPU E5649 @ 2.53GHz 
server of 24 CPUs and 142 GB RAM in the Area52 Re-
search Group at the University College Dublin.

The number of sequences returned, using various 
bioinformatic analyses, ranged from circa 3k to 214k 
(Table 2) in the different amplicon datasets used. A co-
herent visual representation of the DARN outcome for all 
the datasets is available at https://hariszaf.github.io/darn/. 
The visual and interactive properties of the Krona plot 
allow the user to navigate through the taxonomy. Further-
more, DARN also supports a thorough investigation per 
OTU/ASV, as it returns a .json file with all the OTUs/
ASVs ids that have been assigned in each of the four cat-
egories (Bacteria, Archaea, Eukaryotes and distant).

Significant proportions of non-eukaryote DARN as-
signments were observed in all marine eDNA samples 
(Table 2). Bacterial assignments made up the largest pro-
portion of the non-eukaryotic assignments (35.3% on av-
erage and more than 75% of the OTUs/ASVs in some cas-
es), however, archaeal assignments were also detected to a 
great extent as well (18.4% on average). The lentic samples 
were those with the shortest amplicon length among those 
analysed (142 bp); hence, for their orientation a database 
with only the shortest consensus sequences (<700 bp) was 
used, as otherwise a great number of sequences did not 
have sufficient number of hits and was discarded (see Sup-
pl. material 2: Table S2). It is worth mentioning that in this 
case, the initial number of raw reads ranged from ~53,000 
(ERS6488992, ERS6488993) to ~88,000 (ERS6488993) 
while the number of ASVs returned (using Swarm with d 
parameter equal to 10) ranged from 365 (ERS6488993) to 
823 (ERS6488993). This relatively low number of ASVs 
could indicate that targeting such small COI regions could 
decrease the co-amplification of non-targeted sequences. 
In the case of bulk samples (Table 2) only a low propor-
tion of the sequences were not assigned as Eukaryotes, 
suggesting that non-eukaryotic sequences are more abun-
dant in environmental samples. This could be expected 
since prokaryotes are amplified as whole organisms from 
environmental samples, while metazoa that are usually 
the targeted taxa in COI studies, are amplified from DNA 
traces or/and other parts of biological source material.

Conclusions

By making use of a COI – oriented reference phylogenetic 
tree built from 1,593 consensus sequences, to phylogenet-
ically place sequences from COI metabarcoding samples 
onto it, the surmise for including bacteria, algae, fungi 
etc. (Yang et al. 2013; Aylagas et al. 2016) was verified. 
Our results demonstrate that standard metabarcoding ap-
proaches based on the COI gene region of the mitochon-
drial genome will not only amplify eukaryotes, but also a 
large proportion of non-target prokaryotic organisms, such 

as bacteria and archaea. Clearly, dark matter, and especial-
ly bacteria, make up a significant proportion of sequences 
generated in COI based eDNA metabarcoding datasets. 
The large proportion of prokaryotes observed in the pres-
ent study is corroborated by the findings of Yang et al. 
(2013). Furthermore, dark matter seems to be particularly 
common in eDNA as compared to bulk samples (Andújar 
et al. 2018). However, it should be mentioned that the high 
number of prokaryotic sequences in COI metabarcoding 
data is also reflecting known issues with contamination 
(Kumar et al. 2013; Dittami and Corre 2017; De Sim-
one et al. 2020), incorrectly labeled reference sequences 
(Steinegger and Salzberg 2020) and holobionts (Gilbert et 
al. 2012; Salvucci 2016) in eukaryotic genomes.

As publicly available bacterial COI sequences are far 
too few to represent the bacterial and archaeal diversi-
ty, their reliable taxonomic identification is not currently 
possible. This way, bacterial, i.e. non-target, sequences 
that were amplified during the library preparation have 
at least the possibility of a taxonomy assignment. Our 
implementations using DARN indicate that it is essential 
both for global reference databases (e.g., BOLD, Midori 
etc) and custom reference databases which are commonly 
used, to also include non-eukaryotic sequences.

While our approach specifically addressed the COI 
gene, DARN can be adapted to analyse any locus frag-
ment. For instance, metabarcoding of environmental 
samples for the 12S rRNA mitochondrial region is often 
employed to assess fish biodiversity (Weigand et al. 2019; 
Miya et al. 2020) and the approach presented here could 
be adjusted to allow further analyses of the 12S rRNA 
data. In addition, our approach can be used to identify 
non-target eukaryotes when the target is bacterial taxa 
(Huys et al. 2008).

The approaches implemented in DARN can benefit 
both bulk and eDNA metabarcoding studies, by allow-
ing quality control and further investigation of the unas-
signed OTUs/ASVs. The approach is also adaptable to 
other markers than COI. Moreover, the approach present-
ed here allows researchers to better understand the known 
unknowns and shed light on the dark matter of their me-
tabarcoding sequence data.
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