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Abstract
Amplicon metabarcoding is an established technique to analyse the taxonomic composition of communities of organisms using 
high-throughput DNA sequencing, but there are doubts about its ability to quantify the relative proportions of the species, as op-
posed to the species list. Here, we bypass the enrichment step and avoid the PCR-bias, by directly sequencing the extracted DNA 
using shotgun metagenomics. This approach is common practice in prokaryotes, but not in eukaryotes, because of the low number 
of sequenced genomes of eukaryotic species. We tested the metagenomics approach using insect species whose genome is already 
sequenced and assembled to an advanced degree. We shotgun-sequenced, at low-coverage, 18 species of insects in 22 single-species 
and 6 mixed-species libraries and mapped the reads against 110 reference genomes of insects. We used the single-species libraries 
to calibrate the process of assignation of reads to species and the libraries created from species mixtures to evaluate the ability of 
the method to quantify the relative species abundance. Our results showed that the shotgun metagenomic method is easily able to 
set apart closely-related insect species, like four species of Drosophila included in the artificial libraries. However, to avoid the 
counting of rare misclassified reads in samples, it was necessary to use a rather stringent detection limit of 0.001, so species with a 
lower relative abundance are ignored. We also identified that approximately half the raw reads were informative for taxonomic pur-
poses. Finally, using the mixed-species libraries, we showed that it was feasible to quantify with confidence the relative abundance 
of individual species in the mixtures.
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Introduction
Metabarcoding is a technique used to quantify species 
abundance in natural communities using high-throughput 
DNA sequencing. There is usually a PCR step to enrich 
the DNA of a certain genomic region before sequencing, 
in what is normally termed amplicon metabarcoding. 
This technique is well-established and used in many eco-
logical settings and with different groups of organisms 
(Clare et al. 2016; Evans et al. 2016; Deagle et al. 2018; 
Taberlet et al. 2018), but there is ample evidence today 
that this method is not always quantitative (Lamb et al. 
2018; Piñol et al. 2019).

There is some consensus in literature that, if the PCR 
step could be avoided, then the metabarcoding process 
would be much more quantitative (Taberlet et al. 2012; 
Zhou et al. 2013; Bista et al. 2018). One PCR-free ap-
proach is shotgun metagenomics, where the extracted 
DNA is sequenced directly, so all PCR-generated biases 
are avoided (Taberlet et al. 2012; Yu et al. 2012; Zhou 
et al. 2013; Elbrecht and Leese 2015). This method pro-
vides reads from every part of the genome that can be 
compared with sequences stored in genomic repositories. 
In prokaryotes, shotgun metagenomics provides more 
accurate taxonomic identification than the classical 16S 
amplicon metabarcoding (Chen and Pachter 2005). How-
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ever, in eukaryotes, shotgun metagenomics is hindered 
by the scarcity of eukaryote species with sequenced ge-
nomes (8,417 eukaryote versus 203,148 prokaryote ge-
nomes; NCBI database, accessed on 29 April 2019) and 
their larger size (400.2 Mb ± 1,106.2 Mb in eukaryotes 
and 3.9 Mb ± 3.7 Mb on prokaryotes). 

In eukaryotes, shotgun metagenomics has been 
mainly applied using chloroplasts and mitochondri-
al genomes (Srivathsan et al. 2015; Tang et al. 2014), 
but also with multiple-copies nuclear genomic regions 
(Linard et al. 2015). The studies, using mitochondrial 
genomes, showed that quantitative information could 
be obtained from heterogeneous samples (Zhou et al. 
2013; Tang et al. 2015; Bista et al. 2018), but it is fair 
to assume that the use of complete genomes would pro-
vide better quantitative results. Still, the whole-genome 
metagenomic approach, albeit conceptually sound, has 
never been tested in eukaryotes. There are good rea-
sons for the lack of such studies, the most important 
one being the low number of species with assembled 
genomes. However, the number of sequenced genomes 
is quickly increasing, as there are several ongoing pro-
jects devoted to obtain complete genomes of several 
groups of organisms: G10K for vertebrates (Genome 
10K community of scientists 2009), GIGA for marine 
invertebrates (GIGA Community of Scientists 2014), 
GAGA for ants (Boomsma et al. 2017), i5K for arthro-
pods (Robinson et al. 2011; Levine 2011; i5K Consor-
tium 2013), 10KP for plants (Cheng et al. 2018) and 
1KFG for fungi (Grigoriev et al. 2014), amongst others. 
There is even a proposal to sequence the genomes of all 
eukaryotic species in ten years for ca. 3 billion dollars 
(Lewin et al. 2018); this estimate could be optimistic, 
but it probably means that the objective is within reach 
in a few decades, not more.

In this paper, we imagine a world in which the com-
plete genomes of all the species are known. We simulate 
this future world by preparing a reference database of 
insect species whose genome is already assembled to 
an advanced degree and available at the NCBI RefSeq 
repository. We shotgun-sequenced DNA from some of 
these species in low-coverage single-species libraries, 
prepared without any PCR step and develop the bio-
informatic algorithms necessary to go from raw reads 
to species assignation. Subsequently, we apply our ap-
proach to known mixtures of insect DNA to see if the 
method produces a quantitative estimate of the insect 
species present.

This exercise is a preliminary test of the difficulties 
likely to be faced in the future when an important num-
ber of complete genomes becomes available. In particu-
lar, we address here the following questions: (1) Is the 
metagenomic method useful to set apart closely related 
insect species; (2) What is the proportion of reads that 
is truly informative for species identification; (3) How 
many reads are necessary to achieve a reasonable level of 
confidence to provide quantitative estimates of the rela-
tive species abundance? 

Material and methods

Reference genomes

We considered all insect species whose genome was se-
quenced, assembled and available at the NCBI RefSeq 
Database on 2 August 2018. In total, 115 representative 
genomes of insect species were downloaded; of those ge-
nomes, five were removed for different reasons (Suppl. ma-
terial 2). The remaining 110 species belonged to 7 orders 
and 43 families; 28 of them were of the genus Drosophila. 

Selection of the species, preparation of the DNA li-
braries and sequencing

From this group of 110 species, we selected 18 species 
for low-coverage genome sequencing (Table 1), based on 
availability of fresh specimens. In general, the specimens 
were captured alive, but for two dipterans, Ceratitis capita-
ta and Bactrocera oleae, that came together from fly traps 
and for the bed bug Cimex lectularius that was captured 
and stored by a pest-control company. The specimens were 
preserved in 70% ethanol at 4ºC for no longer than a few 
weeks and high quality DNA was extracted from ca. 20 
mg of material of each species. In some cases, multiple 
extractions were done to obtain the minimum amount of 
DNA required for library preparation. We used the DNeasy 
Blood & Tissue Kit (Qiagen) to extract the DNA.

We prepared two kinds of libraries: 22 libraries with 
DNA of a single-species and 6 libraries with a mixture of 
DNA of several species at known relative concentrations. 
The single-species libraries were used to calibrate the bi-
oinformatic pipeline of assignment of reads to species; the 
mixed-species libraries were used to test the ability of the 
calibrated method to estimate the relative abundance of 
individual species in mixtures. All libraries were prepared 
using the TruSeq DNA PCR-Free LT Kit of Illumina fol-
lowing the manufacturer’s instructions (Ref. 15037063).

All libraries were sequenced using an Illumina MiSeq 
with the 2x150 chemistry in three different runs, two runs 
for single-species (Table 1) and one for mixed-species li-
braries (Table 2). Four species (Drosophila melanogaster, 
D. mojavensis, D. virilis and Linepithema humile) were 
sequenced twice in single-species libraries (using different 
DNA extractions in all cases and different populations for 
L. humile and D. melanogaster) to evaluate the repeatabil-
ity of the method. The mixed-species libraries were pre-
pared from the same extracted DNA of the first run of sin-
gle-species libraries. Considering the sequencing depth and 
the genome size of the studied species, the mean coverage 
obtained was below 1 (Table 1). Therefore, our approach 
can be qualified as low-coverage shotgun metagenomics. 

The target concentration of each species in the mix-
tures was calculated using a geometric law of parameter 
k (Magurran 2004): the abundance of the most abundant 
species is k; the abundance of the second most abundant 
one is k·(1–k) and so on. The higher the k value, the great-
er the difference in concentration between species. In the 



Metabarcoding and Metagenomics 4: e48281

https://mbmg.pensoft.net

3

Table 1. Summary table of the species in single-species libraries; the first run (run #1) was performed in September 2016 and the 
second (run #2) in July 2018.
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1 1 PM Papilio machaon Lepidoptera Papilionidae Wild Spain 217,260 208,832 0.117
1 2 DV Drosophila virilis Diptera Drosophilidae Cultured Spain 2,357,451 2,088,898 1.717
1 3 DMe Drosophila melanogaster Diptera Drosophilidae Cultured Spain 1,141,884 1,094,403 1.195
1 4 DMo Drosophila mojavensis Diptera Drosophilidae Cultured Spain 834,212 787,688 0.646
1 5 BO Bactrocera oleae Diptera Tephritidae Wild Spain 290,498 279,835 0.093
1 6 LH Linepithema humile Hymenoptera Formicidae Wild Spain 711,171 683,311 0.486
1 7 AE Acromyrmex echinatior Hymenoptera Formicidae Cultured Denmark 116,597 110,086 0.059
1 8 BT Bombus terrestris Hymenoptera Apidae Wild Spain 997,469 972,727 0.603
1 9 AM Apis mellifera Hymenoptera Apidae Wild Spain 631,194 607,965 0.378
1 10 AP Acyrthosiphon pisum Hemiptera Aphididae Cultured USA 342,344 282,940 0.092
2 1 ACo Atta colombica Hymenoptera Formicidae Cultured Denmark 1,636,355 1,607,703 0.845
2 2 BTa Bemisia tabaci Hemiptera Aleyrodidae Cultured Spain 1,256,606 1,170,057 0.307
2 3 CL Cimex lectularius Hemiptera Cimicidae Wild Spain 1,753,361 1,703,285 0.515
2 4 DMe Drosophila melanogaster Diptera Drosophilidae Cultured Spain 1,454,804 1,428,616 1.523
2 5 DMo Drosophila mojavensis Diptera Drosophilidae Cultured Spain 898,735 820,019 0.697
2 6 DV Drosophila virilis Diptera Drosophilidae Cultured Spain 668,442 619,733 0.488
2 7 DSu Drosophila suzukii Diptera Drosophilidae Cultured Spain 1,255,192 1,178,528 0.811
2 8 LH Linepithema humile Hymenoptera Formicidae Wild Spain 1,082,202 1,047,744 0.742
2 9 PXy Plutella xylostella Lepidoptera Plutellidae Wild Spain 2,125,062 1,913,733 0.813
2 10 SI Solenopsis invicta Hymenoptera Formicidae Wild Argentina 1,830,687 1,772,743 0.695
2 11 VE Vollenhovia emeryi Hymenoptera Formicidae Wild Japan 1,743,917 1,679,101 0.912
2 12 WA Wasmannia auropunctata Hymenoptera Formicidae Wild Spain 1,667,606 1,613,371 0.772

Table 2. Relative abundance of the species in mixed-species libraries (in October 2017). 
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1 0.5010 0.0078 0.0626 0.2505 0.1252 0.0157 0.0313 0.0039 0.0020 1,897,302 1,842,838
2 0.2505 0.0020 0.1252 0.5010 0.0626 0.0313 0.0157 0.0078 0.0039 1,674,754 1,597,601
3 0.3039 0.0389 0.1088 0.2158 0.1532 0.0548 0.0772 0.0276 0.0196 1,887,006 1,829,291
4 0.2158 0.0196 0.1532 0.3039 0.1088 0.0772 0.0548 0.0389 0.0276 1,557,348 1,511,536
5 0.2127 0.0747 0.1261 0.1787 0.1501 0.0890 0.1059 0.0628 1,767,384 1,709,991
6 0.1787 0.0628 0.1501 0.2127 0.1261 0.1059 0.0890 0.0747 1,344,467 1,264,242

mixtures, we used the following values of k: 0.50 (libraries 
1 and 2), 0.30 (3 and 4) and 0.20 (5 and 6). In each library, 
the order of the species in terms of abundance varied, but 
several species were only used at low or at high DNA con-
centrations because of a limitation on the amount of DNA 
available for each species. Libraries 1–4 contained DNA 
of 9 species and libraries 5–6 of 8 species (Table 2). 

Quality control and mapping

For the sequences generated in the current study, we 
assessed the quality of raw reads with FastQC v0.11.7 
(Andrews 2015). Trimmomatic v0.36 (Bolger et al. 
2014) was subsequently used to trim the reads to the 
specified length of 150 bp and to discard those shorter 
than 140 bp.

We then aligned each read to all reference genomes 
individually using BWA 0.7.15-r1140 (Li and Durbin 
2009). For each reference, the BWA index was con-
structed using the index command with default set-
tings. The mapping was conducted with the mem al-
gorithm (Li 2013) and default options. As the mapping 
of a read was performed independently for each refer-
ence, we acquired as many alignment files as referenc-
es used. We used SAMtools (Li et al. 2009) to remove 
reads that did not map to any reference. Here, we did 
not use the paired-end reads provided by the Illumina 
sequencer, but only the first set of single-end reads (the 
R1 FASTQ files), because, in many eDNA applications, 
the fragments were rather short, so the advantage of 
having paired reads in longer fragments was reduced in 
actual samples.
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Figure 1. Flow diagram of the computational pipeline used in 
this study. At the top, input data and, below it, the steps and 
tools needed for the identification procedure.

From mapped reads to species identity

In general, one-read maps into several reference genomes, 
so an algorithm is needed to decide between alternative 
assignations of a read. In metabarcoding and metagenom-
ics studies, reads are commonly assigned to taxa using the 
lowest common ancestor algorithm (LCA) (MEGAN: Hu-
son et al. 2007; KRAKEN: Wood and Salzberg 2014). The 
LCA algorithm intends to extract as much taxonomic infor-
mation as possible from a set of reads, so, if one-read maps 
well enough in two or more different reference genomes, the 
LCA assigns the read to their common ancestor in the phy-
logenetic tree. Here, the interest is different, as we intend to 
only use genomic regions that are useful for species-level 
identification; thus, if one-read maps well enough in two 
different reference genomes, we deem it as non-informative 
and ignore it, instead of assigning it to its common genus 
or family. Having this objective in mind, we devised the 
simple γ–δ algorithm to accomplish it (Figure 2). Basically, 
what the γ–δ algorithm does is to assign a read to species i 
when it maps well (≥ γ) to species i and bad (< δ) to the rest 
of species; on the contrary, when a read maps well in two or 
more species, we declare it non-informative; in all cases γ 
> δ. The quality of the mapping is measured as the mapping 
ratio A and it is calculated as the sum of read’s matching 
nucleotides to the target sequence (nm), divided by the total 
number of nucleotides in the alignment (nt). 

A = nm / nt	 (1)

Even though a read r can be assigned to many refer-
ences, the γ–δ algorithm only needs the two highest map-
ping ratios. Let A1 and A2 be the highest and second high-
est mapping ratios of r. We assume that A1 corresponds to 
the mapping ratio of r to the reference genome of species 

i. Then the assignation algorithm works in the following 
way (Figure 2):

•	 If A1 < γ, then r is non-informative (because it does not 
map well enough to any species)

•	 If A1 ≥ γ and A2 ≥ δ, then r is non-informative (because 
it maps too well to two different species)

•	 If A1 ≥ γ and A2 < δ, then r is informative and it is as-
signed to species i (because it maps well enough in one 
species and not in any other one).

As the best values of γ and δ are unknown, we used the 
single-species libraries to find the best combination of γ 
and δ. The reads were divided into a training set (75% of 
the reads chosen randomly) to find the best γ–δ and a test 
set (the remaining 25% of reads) to independently calcu-
late the goodness of fit of the model. The tested values 
of γ and δ were all the combinations of γ = {0.99, 0.98, 
0.97} and δ = {0.98, 0.97, 0.96} where γ > δ. 

Detection limit

The above algorithm produced a list of species assigned 
to each read of a library. In single-species libraries, ideal-
ly, all reads should belong to the same species (from now 
on, the focal species). However, detection of additional 
species could occur for several reasons, such as contami-
nation from the lab, sequencing errors and even tag jump-
ing between multiplexed libraries (Schnell et al. 2015).

In real samples, contaminants are hard to detect, but 
in our single-species libraries, they are not. If a read cor-
responds to a species handled simultaneously in the lab, 
but not sequenced, then it is probably a genuine contam-
ination problem and could be removed from the list of 
recovered species.

The other kinds of wrongly assigned species likely 
produce a very low number of reads. The only way to 
deal with them is to set a detection limit (ε), so the species 
with a proportion of reads lower than ε are ignored. Here, 
we present results using the detection limits of 10-2, 10-3 
and 10-4.

Selection of best values of γ, δ and ε

With the single-species libraries, we used three different 
criteria to decide which values of γ, δ and ε provided best 
results. The most important one was that the number of 
species reported had to be one for single-species librar-
ies. In addition, we wanted to maximise the proportion of 
reads assigned to the focal species and the proportion of 
informative reads (assigned to any species).

In practical terms, we first fixed the ε parameter. Next, 
we compared the different γ–δ combinations using the 
PERMANOVA test (Anderson 2001), followed by a post 
hoc multiple comparison with the Bonferroni test. 

The final output of the above analysis is a combination 
of values of γ, δ and ε that were best for the single-species 
libraries analysed in this study. The goodness of fit of this 
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cies libraries. However, from a practical point of view, it 
would be interesting to investigate if sequencing depth 
can be reduced and a robust quantitative estimation of 
the relative species abundance maintained. Thus, more li-
braries could be multiplexed in a single run and so reduce 
the overall cost. To evaluate this possibility, we ran the 
same computational pipeline as before (using the chosen 
parameters γ, δ and ε), but randomly reducing the number 
of reads to a proportion of 0.1, 0.01 and 0.001 of the orig-
inal ones. Each simulation was repeated 100 times, using 
a different random set of reads. Afterwards, we estimated 
the number and relative abundance of the recovered spe-
cies in each rarefied sample and calculated the Pearson 
correlation between the actual and the estimated relative 
abundance of the species.

Statistics analysis 

All statistical analyses were performed using R 3.4.2 (R 
Core Team 2016) in RStudio (version 1.0.143; RStudio 
Team 2015). Permutational analysis of variance (PER-
MANOVA) and subsequent pairwise comparison with 
Bonferroni correction were conducted using the package 
‘vegan’ (Oksanen et al. 2018). Plots were created using 
the packages ‘ggplot2’ (Wickham 2016) and ‘ggpubr’ 
(Kassambara 2018).

Results

Single-species libraries

The 22 libraries prepared from DNA of single-species 
of insects (Table 1) generated 1,136,957 ± 633,142 
(mean ± s.d.) reads, with a coverage of 0.65 ± 0.43. A 
proportion of 0.013 ± 0.026 reads were eliminated in the 
trimming step and 0.042 ± 0.026 in the mapping step, so 
a proportion of 0.95 ± 0.04 of the raw reads remained 
for further analysis.

The most important characteristic of these libraries is 
that the number of species recovered, in theory, must be 
one. With these libraries, we parameterised two aspects of 
metagenomic species assignment: first, what is the appro-
priate detection limit (ε) for removal of spurious species 
(i.e. cut-off for minimum proportion of reads for species 
to be retained) and second, which are the best values of 
γ and δ. 

For the detection limit ε, we describe in detail the 
process followed for the analysis of the first run of sin-
gle-species libraries using the values of γ = 0.99 and δ = 
0.98. The rest of the single-species libraries and all the 
other γ–δ combinations produced relatively similar re-
sults and are provided as Supplementary material (Suppl. 
material 3 and 4).

After the application of the γ–δ algorithm, there were 
19.6 ± 8.0 reference genomes (species) per library (Table 
3). The most abundant one was the focal species, always 
above 0.98, except for B. oleae (0.93). Obviously, this 

Figure 2. Flow diagram of the γ–δ algorithm. Only the two 
highest mapping ratios to two reference genomes of a single 
read are required. In the figure, it is assumed that the highest 
mapped ratio A1 belongs to the reference genome i. 

set of parameters was evaluated using the test set, i.e. the 
remaining 25% of reads were not used for the calibration.

As will be shown in the results, using the best values 
of γ, δ and ε, we still found in the single species librar-
ies some reads that were wrongly assigned to non-focal 
species. To explore the identity of all these misidentified 
reads, we blasted them (or a subset of 100 reads when 
the total number of misclassified reads was higher) with 
megablast (Morgulis et al. 2008) against the NCBI nucle-
otide collection (nt) database (Wheeler et al. 2007). 

Quantification of the relative proportion of the species

Mixed-species mock samples were processed following 
the same computational pipeline as outlined above (Fig-
ures 1 and 2), using the best combination of γ, δ and ε 
values determined in the previous step. The estimated 
proportion of reads, assigned to each reference genome, 
was calculated without considering the rejected reads 
(not mapped or not assigned reads). This estimated pro-
portion was compared with the actual one (Table 2), using 
the Pearson correlation coefficient. 

Rarefaction of sequenced reads

As can be seen from the results, we obtained a good quan-
titative estimation of species abundance in all mixed-spe-
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high number of recovered species is unacceptable for sin-
gle-species libraries. 

Some of these additional species were handled in the 
same lab, but finally were not sequenced because of their 
poor quality or for other reasons. These species included 
Ceratitis capitata (Diptera: Trephitidae), Bombyx mori 
(Lepidoptera: Bombycidae) and Tribolium castaneum 
(Coleoptera: Tenebrionidae) in the first single-species 
run and B. mori again in the second run. Thus, they can 
legitimately appear in the species list because of lab con-
tamination or tag-jumping. If we eliminate these species 
(Table 3E), the number of species per library is still high 
at 9.5 ± 11.4 (Tables 3A-D).

The next step is the removal of the species below a cer-
tain detection limit. If the species having a relative pro-
portion below ε = 0.0001 were discarded (Table 3D), the 
remaining number of recovered species would be reduced 
to 3.1 ± 2.6 (Tables 3A-C). An increase in the detection 
limit to ε = 0.001 reduced the number of recovered spe-
cies to one, but for Drosophila virilis (Lucilia cuprina, 
same order) and Apis mellifera libraries (Apis florea, 
same genus) (Tables 3A-B). A further increase in the de-
tection limit to ε = 0.01 eliminated all non-focal species. 
In summary, the use of a detection limit of ε = 0.001 al-
most eliminates all undesired species from the list (Table 
3A, B). A very similar result was observed with the sin-
gle-species libraries of the second run: again, L. cuprina 
appeared in the library of D. virilis and Atta cephalotes in 
the library of A. colombica (Suppl. material 4). Therefore, 
considering these results, we will use a detection limit of 
ε = 0.001 in all further analyses.

The exploration of the misidentified reads in Table 3 
against the NCBI nt database produced different kinds 
of results depending on the species considered. (1) The 
reads assigned to the dipteran Lucilia cuprina in the li-
braries of the three species of Drosophila were assigned 
to bacteria, mostly Providencia sp. and Morganella sp. 
(Suppl. material 7). (2) Ninety-nine percent of the reads 
assigned to Apis florea in the libraries of Bombus ter-
restris and A. mellifera, were rRNA and other kinds of 
RNA. (3) Many reads of Drosophila melanogaster and 
D. mojavensis, assigned to a wrong species of Drosoph-
ila, mapped into bacteria of the genus Lactobacillus and 
Acetobacter and a few were RNAs or transposons. (4) All 
seven reads of Acromyrmex echinatior, wrongly assigned 
to Vollenhovia emeryi, mapped to the bacteria Wolbachia 
sp. (5) Approximately a quarter of the wrongly assigned 
reads of Bombus terrestris to B. impatiens were RNAs of 
Bombus or Apis and (6) About half of the reads of Apis 
mellifera, assigned to A. cerana and A. dorsata, were 
RNAs (Table 3 and Suppl. material 7). 

The final step is to decide which of the tested γ–δ 
combinations provided better results. First, the number 
of identified species was closer to 1 for γ = 0.99 than for 
γ = 0.98 or γ = 0.97 (Figure 3A). Even though the com-
bination of γ = 0.98 and δ = 0.96 was not significantly 
different from those with γ = 0.99, that combination had 
a higher data dispersion of detected species (maximum 

Figure 3. Summary boxplots of the 22 single-species libraries 
used to search the best combination of parameters γ and δ; in 
all cases, a detection limit of ε = 0.001 was used and contami-
nant species were discarded. (A) Number of identified species 
in the library. (B) Proportion of the assigned reads allocated to 
the right species. (C) Proportion of the total reads (after trim-
ming and mapping) that were informative (i.e. assigned to any 
species). A different letter at the top of the figures indicates sig-
nificant differences amongst γ–δ combinations.

value is 1 vs. 3). Next, we observed neither differences 
amongst three γ–δ combinations with γ = 0.99 in the pro-
portion of correctly assigned reads (Figure 3B; p > 0.99), 
nor in the proportion of the informative reads (Figure 3C; 
p > 0.91). Albeit non-significantly, the combination of pa-
rameters γ = 0.99 and δ = 0.98 was slightly better than for 
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δ = 0.97 or δ = 0.96 and therefore, we will use them in all 
the following analyses.

The replicated single-species libraries (four species 
that were analysed in two separate runs) produced re-
markably similar results. For example, both libraries of 
D. virilis had L. cuprina at a relative concentration higher 
than ε = 0.001; in the other three libraries, only the focal 
species was recovered above a value of ε = 0.001 (see 
Suppl. material 6, for a direct comparison of the duplicat-
ed single-species libraries). 

We tested the quality of the adjusted parameter set 
ε  = 0.001, γ = 0.99 and δ = 0.98 obtained with the train-
ing set, using the remaining 25% of reads (i.e. the test 
set). The results were not statistically different between 
the test set and the training set for any of the analysed 
variables (Suppl. material 1). Using the test set and the 
above parameter values, the number of identified species 
per library was 1.09 ± 0.29, the proportion of correctly 
assigned reads was 0.99 ± 0.01 and the proportion of in-
formative reads per sample was 0.47 ± 0.15. It is worth 
noting that the proposed algorithm with the above param-
eter set was perfectly able to set apart closely-related spe-
cies, like the species of Drosophila (three in the first run 
and four in the second one).

Mixed-species libraries

The six libraries prepared from DNA of multiple species 
of insects (Table 2) generated 1,688,044 ± 212,119 reads. 
A proportion of 0.003 ± 0.001 reads were eliminated in 
the trimming step and of 0.035 ± 0.012 in the mapping 
step, so there remained a proportion of 0.962 ± 0.012 of 
the raw reads for further analysis.

As in the single-species libraries, in the mixed-species 
libraries, there were also contaminants handled in the 
laboratory, but not sequenced. To the already mentioned 
C. capitata, B. mori and T. castaneum, we must add D. 
virilis (that was not sequenced in any mixed-species li-
brary) and L. humile (not sequenced in libraries 5 and 6). 
As we did before, we eliminated all these species as gen-
uine contaminants (Table 4E). Even after removing these 
contaminants, the number of species in the mixture was 
still very high (45–53), so it was mandatory to apply the 
proposed detection limit of ε = 0.001 values. By doing 
this, we recovered all the expected species in the mixtures, 
9 in libraries 3–4 and 8 in libraries 5–6; Tables 4A–B), 
except in libraries 1 and 2 where P. machaon, the species 
with the actual lowest abundance in the mixture, was pres-
ent in a proportion slightly below ε = 0.001 (Table 4C). 

Table 4. Relative proportion of assigned reads to species, in parentheses, for each one of the 6 mixed-species libraries of Table 2 
after applying γ–δ algorithm with parameters γ = 0.99 and δ = 0.98. Codes of the species as in Suppl. material 2. In bold, the species 
whose DNA was actually put in the mixture.

Criteria Lib. 1 Lib. 2 Lib. 3 Lib. 4 Lib. 5 Lib. 6
A: above ε = 
0.01

AE (0.64971) AE (0.37924) AE (0.44486) AE (0.30977) AE (0.32342) AE (0.27894)
BO (0.17167) BO (0.37805) BO (0.16181) BO (0.2496) BO (0.1536) BO (0.18874)
BT (0.06582) AM (0.12349) AM (0.10563) AM (0.15797) AM (0.13569) AM (0.16409)
AM (0.05033) BT (0.03834) BT (0.08595) BT (0.06737) DMo (0.12864) DMo (0.10473)
DMo (0.02998) DMe (0.02339) DMo (0.0789) DMo (0.05985) BT (0.09288) DMe (0.08641)
DMe (0.01052) DMo (0.01707) DMe (0.03823) DMe (0.05742) DMe (0.0694) BT (0.082)

LH (0.0354) LH (0.0536) AP (0.06842) AP (0.06055)
AP (0.03213) AP (0.01873) PM (0.01576) PM (0.01866)

B: from ε = 0.01 
to ε = 0.001

AP (0.00577) LH (0.00997) PM (0.00434) PM (0.00697)
LH (0.00245) AP (0.0017)

C: from 
ε = 0.001 to 
0.0001

PM (0.00082) PM (0.0009) AF (0.00024) AF (0.00034) AF (0.00029) AF (0.00036)
VE (0.00013) AF (0.00026) VE (0.00011)
AF (0.00012) VE (0.0001)

D: below 
ε = 0.0001

WA, BI, DAr, TCo, 
ACer, DB, TS, 

DEl, LC, DO, AD, 
DBi, TZ, DEu, 

MDe, CCal, DSi, 
ACep, CC, DN, 

DF, DK,DSe, EM, 
MP, ACo, BD, BL, 
CL, DR, DSu, NVi, 

PH, ZC

WA, ACer, BI, 
LC, AD, DAr, 
DB, TS, TCo, 

MDe, DEl, EM, 
NVi, DO, DSi, 
DS, DEu, ACo, 
BL, TZ, ACep, 
ZC, CQ, DBi, 
DSe, MP, BD, 
APl, CF, DT, 
DW, DY, HL, 

SI, SC

DAr, WA, DEl, DB, 
LC, BI, DO, ACer, 

DBi, MP, TCo, DSi, 
AD, TS, DEu, DF, 

MDe, DS, DSe, DT, 
ACo, TZ, BD, NVi, 
ACep, SI, DR, BL, 

DW, CCal, DN, 
DSu, DNa, DNo, 
BA, LD, NL, SL

VE, WA, ACer, DAr, 
DEl, DB, BI, DO, 
LC, AD, DSi, TS, 

MP, TCo, DEu, NVi, 
DF, DSe, MDe, DSu, 
DY, DBi, DS, ACo, 

ACep, DNo, CL, 
PXy, SF, DT, TZ, SI, 
BL, DW, DN, DNa, 

CQ, CF, DK, PP

DAr, DEl, VE, DB, 
DO, WA, LC, BI, 

ACer, MP, DSi, DF, 
DBi, DEu, AD, TS, 
TCo, NVi, DS, TZ, 
DSe, DW, NL, EM, 

MDe, DSu, SF, DNa, 
CQ, PP, ACep, DNo, 

CL, DT, DN, DK, 
CCal, BA, LD, APl, 

CC, DC, DEr

DAr, VE, DEl, 
ACer, DB, DO, LC, 
WA, BI, DEu, MP, 
DSi, DF, DS, DBi, 
AD, MDe, TCo, 
DSu, TS, DSe, 
EM, DNo, NVi, 
NL, DNa, ACep, 

DT, ACo, DH, TZ, 
CQ, PP, CL, DN, 

ZC, HL, AGa, Dan, 
MS, PR

E: potential 
contaminants

CCap (0.01185) CCap (0.02603) CCap (0.01131) CCap (0.01743) CCap (0.01064) CCap (0.01323)
BM (0.0005) BM (0.00112) BM (0.00051) BM (0.00044) BM (0.00055) BM (0.00155)

TCa (< 0.00001) TCa (< 0.00001) LH (< 0.00001) LH (< 0.00001)
DV (< 0.00001) DV (< 0.00001)

Total number of 
species 47 49 53 52 55 54
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Figure 4. Scatter plots between the expected (i.e. as the mixtures were prepared in the lab; Table 2) and the estimated species relative 
abundance following the described bioinformatic pipeline (Table 4). Each plot corresponds to one mixed-species library (A to F 
corresponds to libraries 1 to 6). Each point in the plot indicates one species in the mixture. In each plot, the correlation coefficient 
(r) and its p-value are also indicated.

The correlation coefficient between actual and estimated 
relative species abundances was statistically significant in 
all mixtures (Figure 4), so the method was able to quanti-
fy the relative proportions of the species. The fitting was 
better for high values of k (more difference in the relative 
abundance of species; libraries 1–2, k = 0.50) than for low 
values of k (less difference in the relative abundance; li-
braries 5–6, k = 0.20) (Figure 4).

We run the entire pipeline on a server with 2 In-
tel Xeon E5-2620 v3 processors with 6 cores each, 

which allowed a maximum of 24 threads, thanks to 
their hyper-threading technology. The total processing 
time varied between 54 min (library #6, 1.3 raw mil-
lion reads) and 1 h 16 min (library #1, 1.9 raw million 
reads), most of it (89%) consumed by the mapping of 
the reads into the reference genomes and very little 
(3–4%) by the γ–δ algorithm (see Suppl. material 8 for 
the processing time of each step of the pipeline for 6 
mixed-species libraries).
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Figure 5. Effect of the rarefaction of reads on the number of species detected (above ε = 0.001 and without contaminants) in the six 
mixed-species libraries (A to F correspond to libraries 1 to 6). The x axis indicates the proportion of reads used (when 1, all reads 
were used, so there is only one value); in the rest of the values, 100 random repetitions were conducted using the indicated propor-
tion of reads. The horizontal dashed line of each plot indicates the actual number of species in the mixture. 

Rarefaction of the reads

When only a proportion of 0.1 or even 0.01 of the initial 
reads was used, the number of recovered species was the 
same in libraries 3–6 as when all reads were used (Figures 
5C-F). In libraries 1 and 2, there was some discrepancy, 
but it was caused by the estimated relative abundance of 
P. machaon being sometimes slightly below and some-

times slightly above 0.001 and so our detection limit of 
ε = 0.001 discarded or accepted the species accordingly 
(Figures 5A-B). A further reduction in the proportion of 
used reads to 0.001 made the number of identified species 
less predictable (Figure 5). However, the correlation co-
efficient r between the observed and the expected relative 
abundance was always significant at all rarefaction levels 
(Figure 6). 
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Figure 6. Effect of the rarefaction of reads on the correlation coefficient r between the expected and the recovered relative abun-
dance of the species in the six mixed-species libraries (A to F correspond to libraries 1 to 6). The x axis indicates the proportion of 
reads used (when 1, all reads were used, so there is only one value); in the rest of the values, 100 random repetitions were conducted 
using the indicated proportion of reads. The horizontal dashed line of each plot indicates the critical value of r, above which meas-
ured r is statistically significant at p < 0.05.

Discussion

Metagenomics is a technology devised to obtain both 
taxonomic and functional gene information for entire 
communities of organisms (Thomas et al. 2012; Zepe-
da Mendoza et al. 2015) and its use is more common 
in prokaryotes than in eukaryotes. Here, we focused on 
the taxonomic aspect of metagenomics and applied it to 
Metazoa. We evaluated the technique using artificial mix-
tures of DNA consisting from one to nine insect species 
whose complete genome has been sequenced to an ad-

vanced degree. The single-species libraries proved to be 
very useful in showing the limitations of the technique: in 
these libraries, the number of expected species is one, but 
we found between 12 and 32 species per library, so it was 
mandatory to establish a detection limit for a species to be 
included in the species list. The mixed-species libraries 
showed that the technique is perfectly able to quantitative-
ly determine the relative abundance of individual species 
in mixtures. Given the scarcity of assembled genomes of 
Metazoa, the proposed methodology is a proof of concept 
of the metagenomics approach rather than a method to 
be applied immediately to actual environmental samples.
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Species identification: spurious species and the need 
for an analytical limit of detection

Our data, collected from single insect specimens, pro-
duced assignments to ca. 20 species; similarly, in each 
mixed-species library (8–9 species), ca. 50 species were 
recovered, so most of the listed species were spurious 
(Tables 3 and 4). These extra species can be divided into 
two groups; contaminants (species handled simultane-
ously in the same lab) and species for which there is no 
known reason for their presence.

There are two possible causes for contaminant DNA. 
The first one is physical contamination in the preparation 
of the libraries in the lab; the second one is the index-hop-
ping effect during the sequencing reaction (Schnell et al. 
2015). We had examples of both kinds.

Three species were handled simultaneously in the lab, 
but not sequenced. All these species appear in most librar-
ies, generally in a proportion lower than 0.001 (Tables 3 
and 4 and Suppl. material 4). Most of the reported con-
taminants cannot be attributed to specific issues in the lab 
workflow. However, the presence of Ceratitis capitata in 
libraries of Bractocera oleae (it accounts for 6.6% in the 
single-species library and above 1% in the mixed-species 
ones) may have occurred during sample collection. These 
two dipterans were trapped together in agricultural fields 
and also transported together to the lab. There, a trained 
entomologist separated the individuals of the two species; 
it is very unlikely that this person could have made an 
identification mistake, but it is possible that fragments of 
C. capitata (legs, antennae, wings) ended up in the B. oleae 
tube. In addition, the two species were, for a certain period, 
suspended in the same ethanol solution. In the analysis of 
our artificial mock samples (both single and mixed-spe-
cies), we eliminated all the contaminant species because 
we knew that they were contaminants. However, in actual 
environmental samples, it can be challenging to set apart 
contaminants from species belonging to the community. 

Another possibility for inter-sample contamination is 
the worrisome tag-jumping effect (Schnell et al. 2015), 
in which a read from one library is mistakenly taken as 
belonging to another one because the tag, used to iden-
tify each multiplexed library, is sequenced erroneously. 
Of course, it is not possible to distinguish this process 
from the genuine contamination discussed above. Again, 
we could safely ignore these species in the single-species 
libraries, but we cannot do anything about them in the 
mixed-species libraries nor in the real samples.

In addition to the contaminants, many other species 
appeared in the lists of both the single and mixed-species 
libraries (Tables 3 and 4) that were never handled in our 
lab nor could be found in the area. All these species ap-
peared at small relative abundances, almost always below 
the threshold of ε = 0.001. The cause of these misclassifi-
cations is probably a sequencing error in our samples, but 
there must also be errors and missing sequences in the 
reference genomes themselves (Donovan et al. 2018; Lu 
and Salzberg 2018). For example, some of the wrongly 

assigned reads were of mutualistic or parasitic bacteria of 
insects, like Providencia sp., Morganella sp., Lactobacil-
lus sp., Acetobacter sp. and Wolbachia sp. (Chandler et 
al. 2011; Singh et al. 2015; Simhadri et al. 2017). Thus, 
it is reasonable to assume that they were in our samples 
alongside the insects, but also in the specimens used to 
generate the reference genomes. Several other wrongly 
assigned reads were of conserved RNA sequences that are 
difficult to set apart from phylogenetically similar spe-
cies. In addition, there is always some intraspecific ge-
netic variability in all species and the specimens that we 
sequenced likely come from a different population from 
the one used to obtain the reference genome. 

The only way to eliminate these species from the 
species list of each library is to set a threshold for the 
relative abundance of the species, i.e. an analytical de-
tection limit. A detection limit of ε = 0.001 eliminated 
all the unwanted species in all but 3 of the 28 artificial 
libraries (Tables 3 and 4 and Suppl. material 4). There is 
a reasonable explanation for two of these three misplaced 
species, as they were congeneric species in the honey bee 
Apis mellifera (A. florea) and in Atta colombica (A. ceph-
alonica) libraries. The presence of the Dipteran Lucilia 
cuprina in the two libraries of Drosophila virilis seems 
to be mediated by two bacteria (Providencia sp. and Mor-
ganella sp.) associated with the microbiome of dipterans 
(Chandler et al. 2011; Singh et al. 2015) that appear in the 
published genome of L. cuprina. Merchant et al. (2014) 
show that this problem is widespread, as they found bac-
terial contamination in five out of nine eukaryotic assem-
bled and published genomes. New bioinformatic tools for 
the decontamination of eukaryotic genome assemblies 
from bacterial contaminants (Fierst and Murdock 2017) 
are likely to alleviate this problem.

In the mixed-species libraries, the detection limit of ε 
= 0.001 removed all spurious species, with no exceptions. 
However, in libraries 1 and 2, DNA of Papilio machaon 
was used to prepare the mixtures at a low concentration 
(Table 2) but was excluded from the species list (Table 
4). Therefore, on one hand, the use of a detection limit 
has the desired effect of eliminating false positives but, 
on the other hand, can generate false negatives. In our 
mixed-species libraries, the balance was favourable, as 
there were no false positives and only two false negatives.

We do not think that the presence of spurious species 
in our artificial libraries is specific to the way that we 
handled the DNA in the lab or to our species assignation 
algorithm. The problem is probably more general, but 
it is only exposed when artificial samples are analysed, 
especially in those consisting of only one species. Other 
researchers have found similar results using prokaryotes 
(Pereira et al. 2018). Consequently, we recommend the 
use of a stringent detection limit (e.g. ε = 0.001) to avoid 
a long list of spurious species. Of course, this will have 
the negative effect of excluding some species that actually 
are present at low abundance, but this trade-off between 
false positives and false negatives is inevitable (Alberdi 
et al. 2017). To be fair, most studies already do this but in 
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a rather unsystematic way. For instance, MEGAN (Huson 
et al. 2007) and many other studies always ignore sin-
gletons. Other studies increase the minimum number of 
reads to keep a taxon in the list (five in Piñol et al. 2014; 
ten in Gibson et al. 2015 and in Lee et al. 2018). As we 
do here, Pompanon et al. (2012) and Alberdi et al. (2017) 
suggest that a relative threshold can be more appropriate 
than absolute read count thresholds. 

Quantification of the relative abundance of the species

The main objective of using metagenomics for the quanti-
fication of the species abundance and hence of this study, 
was to overcome the PCR-biases of amplicon metabar-
coding. Here, we showed that the metagenomics approach 
completely fulfilled this objective, whereas in amplicon 
metabarcoding, the quantification of the abundances of 
the species is sometimes good (Saitoh et al. 2016; Kraai-
jeveld et al. 2015), but in others, it is very poor (Piñol et 
al. 2015; Leray and Knowlton 2017). 

Our mixed-species libraries comprised ca. 1.7 million 
reads each, but the rarefaction experiment showed that, 
even with 100 times less reads (ca. 17000 per library), the 
quantification would still be good (Figure 6). Thus, many 
more samples could be multiplexed in one single Illumina 
MiSeq run and, consequently, reduce the mean cost per 
library. Of course, if the mixtures were richer in species, 
more reads per sample would be needed. Greenwald et al. 
(2017) applied shotgun metagenomics in prokaryotes and 
was also able to estimate relative species abundance with 
high fidelity (r2 > 0.92).

However, it is important to remember that not all bi-
ases are corrected by shotgun metagenomics. Here, we 
began the process using extracted DNA, so all the biases 
in the generation of eDNA sequences (i.e. digestion rates 
in dietary studies or DNA degradation in the soil or in 
the water, or in the DNA extraction) are not accounted 
for. In particular, the same amount of biomass does not 
always render the same amount of DNA (Pornon et al. 
2016); thus, as the usual goal is the estimation of species 
biomass, a biomass-to-DNA factor should be estimated 
for each species or, alternatively, the artificial mixtures 
should be prepared from a known biomass of each spe-
cies rather than from a known DNA amount, as some au-
thors already do (Zhou et al. 2013; Tang et al. 2015).

Data treatment and the assignation of reads to species

In metagenomics, there are, basically, two methods to 
assign reads to species; the assembly-based and the read-
based approaches (Thomas et al. 2012). In the former, 
the reads are assembled using a de-novo assembler into 
contigs and these are mapped into reference genomes; 
the quantification of the species is achieved by counting 
the number of reads assembled in contigs that map into 
a given species. This approach is commonly used in pro-
karyote and in mitochondrial metagenomics, but it was 
not useful in this application because of the low coverage 

of our sequencing: with so few overlapping reads, many 
very small contigs would be obtained.

Consequently, we used here the read-based approach 
that assigns a species to every read by mapping it into a 
reference genome. As a mapper, we used BWA, but oth-
er possibilities would probably be good choices too (e.g. 
Bowtie2, MagicBlast, GEM; Langmead and Salzberg 
2012; Boratyn et al. 2018; Marco-Sola et al. 2012). In any 
case, all mappers normally produce hits of one read into 
several reference genomes, so an algorithm is needed to 
assign a species to a read. By far the most common algo-
rithm used in metabarcoding and metagenomics studies is 
the lowest common ancestor algorithm (LCA; MEGAN: 
Huson et al. 2007; KRAKEN: Wood and Salzberg 2014); 
albeit, there are other alternatives (Hanson et al. 2016; 
Sarmashghi et al. 2019). However, we used here our own 
γ–δ algorithm that sets species apart rather than extract-
ing as much taxonomic information as possible from a set 
of reads, as the LCA algorithm does. The γ–δ algorithm 
declared, as informative, approximately half of the reads. 
This algorithm is extremely straightforward and easy to 
implement.

Present and future of metagenomics

The metagenomics approach presented here for eukary-
otic species will not be a realistic option until the num-
ber of sequenced genomes is a substantial fraction of the 
total biodiversity. Today, the metagenomic method for 
taxonomic purposes is used mostly with genomes of or-
ganelles instead of whole genomes, because the number 
of sequenced organelle genomes is much higher than the 
number of whole genomes (e.g. today there are roughly, in 
the NCBI RefSeq database, 14 times more mitogenomes 
than whole genomes of insects). In addition, the number 
of sequenced organelle genomes is increasing quickly 
with new easier and faster methods, based on next gener-
ation sequencing and de novo assembly (Cameron 2014).

Mito-metagenomics has proved to be better than ampli-
con metabarcoding for quantification purposes (Gómez-
Rodríguez et al. 2015; Bista et al. 2018; Gueuning et al. 
2019), but estimation of relative abundance amongst 
species (i.e. in a given sample, species A is more abun-
dant than species B) is not always high (Tang et al. 2015; 
Krehenwinkel et al. 2017). The quantification power of 
mito-metagenomics is likely bounded for two reasons. 
First, when there is no mitochondrion enrichment (as in 
Zhou et al. 2013), only a small proportion of the shotgun 
reads map into the mitogenome (~0.5 % in insects; Tang 
et al. 2014), so a high sequencing depth is necessary to 
obtain good quantitative results (Gueuning et al. 2019). 
Second and most important, the number of mitoge-
nomes per nuclear genome (mitochondrial copy number) 
is variable amongst species and even between tissues. 
Consequently, in a given amount of DNA (and using it 
as a proxy of biomass), the mitochondrial copy number 
will vary across species, so the estimation of the relative 
abundance of the species will be affected. This problem 
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is known (Crampton-Platt et al. 2016; Krehenwinkel et 
al. 2017) and applies not only to mito-metagenomics, but 
also to amplicon metabarcoding targeting mitochondrial 
markers. The solution is to use an independent estima-
tion of the mitochondrial copy number for each species, 
but we are not aware of any reliable data of this variable 
across arthropod species.

It is also fair to question about the computational prob-
lems that would pose a future with huge reference data-
bases when the genomes of most species are sequenced. 
Perhaps our implementation of the method could be so 
computationally costly that it would be inapplicable in 
practice. In our opinion, the method is perfectly manage-
able today in a modest computer server and will remain 
so in the foreseeable future. In the reported experiments, 
the maximum processing time of the entire pipeline per 
mixed-species library was of 1.3 hours, most of it being 
devoted to the mapping of reads into the reference ge-
nomes. This mapping of reads into genomes is a prob-
lem that fits into the category known as “embarrassingly 
parallel” applications (McCool et al. 2012), in which a 
read can be processed simultaneously with different ref-
erences and, therefore, the complexity of the algorithm 
increases linearly with the number of reads n and the 
number of genomes g. Thus, using library #1 as an exam-
ple, multiplying g by 100 (~ 11000 genomes in our case) 
and decreasing n by 100 (~ 19000 reads) should keep 
the execution time roughly at the same 1.3 hours (we 
showed here that it was possible to reduce the number 
of reads without loss of identification and quantification 
power; Figures 5 and 6).

In addition, the pipeline could eventually be modified 
in several ways to further reduce the execution time. (1) 
Selection of reference genomes in the database: when 
processing a sample, there is no need to compare the 
reads with all the animal genomes (or plant or fungi) in 
the world: if the interest is in insects, then only the ge-
nomes of insects known to occur in a certain geograph-
ical region should become the reference database. Thus, 
even in a future with the genomes of all species already 
sequenced, the number of genomes of interest will nev-
er be of millions, but of 103 to 105 genomes at most. (2) 
Filtering of the reference genomes database: we showed 
here that only approximately half of the reads were in-
formative. The non-informative reads probably belong to 
certain regions of the genome that, when identified, could 
be filtered out from the reference database with appro-
priate programmes. (3) Elimination of non-informative 
reads in running time: in the γ–δ algorithm, a read that 
maps better than δ in two different genomes is declared 
non-informative. Once that read is detected, the mapping 
of it against the remaining reference genomes is not nec-
essary anymore and finally (4) It is reasonable to assume 
that the power of the computers will continue to increase 
in the future as it has done in the past (Williams 2017). 
It is even possible that, in the next decades, unimagined 
computational capabilities become available with the ad-
vent of quantic processors (Arute et al. 2019).

Concluding remarks

According to our results, the low-coverage shotgun 
metagenomic method is perfectly capable to set apart 
closely related insect species, like the four species of the 
genus Drosophila that we included in the artificial librar-
ies. We also saw that, despite the risk that some reads 
were not in the reference databases that we used (reads 
of commensal or parasites species; parts of the genome 
not yet sequenced) or that some reads were very similar 
in more than one reference genome, we achieved a rea-
sonable proportion (ca. 0.50) of truly informative reads. 
By using mixtures, we showed that it is possible with this 
technique to quantify with confidence the relative abun-
dance of individual species in the mixtures and that, with 
much less sequencing depth than the one used here, it was 
possible to obtain comparable results (ca. 17000 reads in 
mixtures of ca. 10 species). Finally, a word of caution. 
The “dream” of getting an eDNA sample, sequencing it, 
mapping it against a growing DNA database and obtain-
ing the species names and relative abundance of all spe-
cies in the mixture that we tried to simulate in this study, 
is not without hurdles. The main one is obviously the low 
number and quality of eukaryote genomes sequenced so 
far, but also the impossibility of identifying, with con-
fidence, species below a certain detection limit and the 
need to improve the algorithms in a future with huge ge-
nome databases and increased sequencing depth.
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