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Abstract
Metagenomics has emerged as a central technique for studying the structure and function of microbial communities. Often the 
functional analysis is restricted to classification into broad functional categories. However, important phenotypic differences, such 
as resistance to antibiotics, are often the result of just one or a few point mutations in otherwise identical sequences. Bioinformatic 
methods for metagenomic analysis have generally been poor at accounting for this fact, resulting in a somewhat limited picture of 
important aspects of microbial communities. Here, we address this problem by providing a software tool called Mumame, which 
can distinguish between wildtype and mutated sequences in shotgun metagenomic data and quantify their relative abundances. We 
demonstrate the utility of the tool by quantifying antibiotic resistance mutations in several publicly available metagenomic data 
sets. We also identified that sequencing depth is a key factor to detect rare mutations. Therefore, much larger numbers of sequences 
may be required for reliable detection of mutations than for most other applications of shotgun metagenomics. Mumame is freely 
available online (http://microbiology.se/software/mumame).
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Introduction
The revolution in sequencing capacity has created an un-
precedented ability to glimpse into the functionality of 
microbial communities, using large-scale shotgun metag-
enomic techniques (Quince et al. 2017). This has yielded 
important insights into broad functional patterns of mi-
crobial consortia (Yooseph et al. 2007; Human Microbi-
ome Project Consortium 2012; Sunagawa et al. 2015). 
However, while overall pathway abundances inferred 
from metagenomic data can tell us much about the gen-
eral functions of communities and how they change with, 
for example, environmental gradients (Bengtsson-Palme 
2018; Bahram et al. 2018), there are many important 

functional differences that are hidden in the subtleties of 
these communities (Österlund et al. 2017). For example, 
many antibiotic resistance phenotypes are the results of 
single point mutations rather than acquisition of novel 
pathways or genes (Johnning et al. 2013). This compli-
cates the studies of selection pressures in environmental 
communities as analysis of such mutations is general-
ly limited to a narrow range of species (Johnning et al. 
2015a, 2015b; Kraupner et al. 2018).

Because of the immense increase in available sequence 
data, it would be desirable to study these mutations from 
shotgun metagenomic libraries, much as other traits have 
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been studied at a large scale (Pal et al. 2016). However, 
attempts to quantify point mutations in metagenomic se-
quencing data often go wrong because the methods do not 
distinguish sufficiently well between mutated and wild-
type variants of the same gene. For example, a sequenced 
read may map to a region identical in the mutated and 
wildtype variant of a gene, causing problems for quanti-
fying their relative proportions (Bengtsson-Palme et al. 
2017). In addition, because the sought-after mutations are 
generally rare in most types of samples, and metagenom-
ic studies are often under-sampled in terms of replicates 
(Jonsson et al. 2017), commonly applied statistical meth-
ods may not be sufficiently sensitive to reliably detect dif-
ferences between samples (Jonsson et al. 2016).

In this study, we provide a partial remedy to these prob-
lems through the introduction of a software tool, Mumame 
(Mutation Mapping in Metagenomes), that can quantify and 
distinguish between wildtype and mutated gene variants 
in metagenomic data, and through suggesting a statistical 
framework for handling the output data of the software. 
In contrast to available tools for investigating nucleotide 
variants, including StrainPhlAn (Truong et al. 2017), Con-
Strains (Luo et al. 2015), and SeekDeep (Hathaway et al. 
2018), Mumame is not aiming to find strain-level differenc-
es in taxonomic composition, thus enabling it to operate at 
much lower sequencing depths as complete coverage of the 
targeted genomes is not necessary for the analysis. Further-
more, while tools such as MIDAS (Nayfach et al. 2016) and 
metaSNV (Costea et al. 2017) allow detection of nucleotide 
variant differences between population at a large scale, they 
are reliant on collections of high-quality reference genomes 
to which they map reads. This allows them to provide more 
information than Mumame does in situations where the 
studied community can be expected to be well represented 
by the reference databases. In contrast, Mumame operates 
on the protein level (or optionally the nucleotide level when 
relevant), allowing detection of specific, functionally rele-
vant point mutations even in evolutionary distant homologs 
to the targeted genes. This enables the application of our 
method to a larger body of metagenomes, with less bias to-
wards already well-characterized species.

Finally, we demonstrate the ability of Mumame to de-
tect relevant differences between environmental sample 
types, estimate the sequencing depths required for the 
method to perform reliably through simulations, and ex-
emplify the utility of the software on detecting resistance 
mutations in publicly available metagenomes. The Mu-
mame software package is open-source and freely avail-
able (http://microbiology.se/software/mumame or https://
github.com/bengtssonpalme/mumame).

Methods

Software implementation

Mumame is implemented in Perl and consists of two 
commands: mumame, which performs read alignment 

to a database of mutations, and mumame_build which 
builds the database for the former command. The muma-
me_build command takes a FASTA sequence file and a 
list of mutations (CSV format) as input. For each entry in 
the mutation list, it finds the corresponding sequence(s) in 
the FASTA file, either by sequence identifier or by CARD 
ARO accessions (Jia et al. 2017). It then excerpts a num-
ber of residues upstream and downstream of the mutation 
position (by default 20 residues for proteins and 55 for 
nucleotide sequences) and creates one wildtype version 
and one mutated version of the sequence excerpt with 
unique sequence IDs. For cases where multiple mutations 
can occur close to each other on the same sequence, the 
software attempts to create all possible combinations of 
mutations (if memory permits; in some situations this 
is not possible because the number of combinations in-
creases exponentially). The software tool also generates 
a mapping file between sequence IDs in the database and 
mutation information from the list.

The main mumame command takes any number of in-
put files containing DNA sequence reads in FASTA or 
FASTQ format and aligns those against the Mumame da-
tabase using Usearch (Edgar 2010). For this read align-
ment, the software runs Usearch in usearch_global mode 
with target coverage set to 0.55 (by default; any value 
≥0.51 should be feasible for target coverage). The output 
is then matched to the wildtype or mutation information 
in the Mumame database, and data is collected for each 
input file and combined into a single output table. The 
software uses a best-hit strategy, with hits sorted by iden-
tity to the reference sequence. As every sequence in the 
database is present in two versions, one variant with and 
one without the point mutations, the top hit will always 
discriminate between the two variants. In addition, as only 
the immediate region around the mutation site is included 
in the database, there cannot be any spurious hits adding 
to wildtype or mutated variants, providing Mumame with 
the maximum possible degree of precision. The choice of 
Usearch for read alignment was made because it consti-
tutes the most versatile sequence search software in that 
it is, unlike most other sequence search tools for large-
scale data, able to align nucleotide sequences to both 
protein and nucleotide sequence databases. However, the 
software design of Mumame is fairly flexible, allowing 
implementation of other software for the sequence search 
process with relatively small effort.

The main output of Mumame is a file with the suffix 
“.table.txt”. This file contains the reads from each library 
aligned to the mutation database, with mutation counts 
in the first set of columns and wildtype counts in the 
second set of columns. The last line of this file contains 
the total number of reads in each library, which can be 
used, e.g., for normalization purposes. The software also 
saves the output from the Usearch run and, optionally, the 
read alignments to the database. The output table gener-
ated by Mumame can be analyzed using the R script (R 
Core Team 2016) supplied with the Mumame package. 
The script reads the read counts for all mutation positions 
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detected, both for wildtype and mutated sequences. The 
script also takes into account the total library sizes, either 
explicitly as normalization factors in the count model or 
implicitly in the proportional model as total library size 
cancels out (see below). The script assesses if there are 
significantly different proportions of mutations between 
different sample groups through a generalized linear mod-
el. Alternatively, an overdispersed Poisson generalized 
linear model (GLM) accounting for the discrete nature of 
the data and the differences in sequencing depth can be 
used (Jonsson et al. 2016; Bengtsson-Palme et al. 2017). 
These two tests were selected after investigating the per-
formance of the two GLM tests, the Student’s t-test on the 
mutation proportions and the Chi-Square test on the total 
counts in a simulation study. We simulated a set of differ-
ent numbers of replicates, effect sizes, sequencing depths 
and average gene abundances (Suppl. material 1: Table 
S1), 100 times for each combination of conditions and 
assumed that counts were Poisson distributed. The simu-
lations showed that the two GLM models overall perform 
better in terms of detecting significances, particularly 
when the sequencing depths and effect sizes are small, 
while generating the expected proportions of false posi-
tive detections. The Poisson model is preferable when the 
number of counts for a targeted gene is low in all sample 
groups. However, this model performs poorly when esti-
mating effect sizes with small numbers of counts. This is 
due to situations where one group has zero counts for all 
replicates. In practice, this means that even if a result is 
deemed significant by the model, the estimated effect size 
should only be considered an indication of the direction-
ality of the effect when counts are all zeros in one group.

The Mumame software is freely available (http://mi-
crobiology.se/software/mumame or https://github.com/
bengtssonpalme/mumame) and can also be installed via 
Conda, using the command “conda install -c bengtsson-
palme mumame”.

Quantification of mutations in metagenomes

To quantify the abundances of fluoroquinolone resis-
tance mutations in the gyrA and parC genes (Johnning 
et al. 2015b), we downloaded the CARD database on 
2018–05–24 (Jia et al. 2017). We extracted all mutation 
information regarding the gyrA and parC genes from the 
“snps.txt” file and created a new file with that informa-
tion. We then created a new Mumame database using 
mumame_build with default options. That database was 
used to align all the reads from the samples generated 
by Kraupner et al. (2018; data provided by courtesy of 
Stefan Ebmeyer and Joakim Larsson) to the database 
using Mumame in the Usearch mode (Edgar 2010) and 
the following options “-d gyrA_parC -c 0.95”. This study 
exposed aquatic bacterial communities in an aquari-
um system to different concentrations of ciprofloxacin 
(0,  0.1, 1 and 10 µg/L) in triplicates. The communities 
were then subjected to both amplicon sequencing of the 
target genes for ciprofloxacin (56,394–290,391 reads per 

sample after preprocessing) and shotgun metagenomics 
(109–190 million reads per sample). We analyzed both 
the shotgun metagenomics data as well as the amplicon 
sequences derived specifically from Enterobacteriaceae 
gyrA and parC genes. Prior to this sequence similarity 
search raw reads were quality filtered using Trim Ga-
lore! (Babraham Bioinformatics 2012) with the settings 
“-e 0.1 -q 28 -O 1”. We then used the R script provided 
with the Mumame software to compare the numbers of 
matches to mutated and wildtype sequences in the data-
base. The same database and method combination was 
used to quantify fluoroquinolone resistance mutations in 
sequence data from an Indian lake exposed to ciproflox-
acin pollution (Bengtsson-Palme et al. 2014; ENA proj-
ect PRJEB6102; https://www.ebi.ac.uk/ena/data/view/
PRJEB6102), as well as in an Indian river upstream and 
downstream of a wastewater treatment plant processing 
pharmaceutical waste (Kristiansson et al. 2011; Pal et al. 
2016; MG-RAST project 18323; https://www.mg-rast.
org/linkin.cgi?project=mgp18323). These samples were 
preprocessed in the same way as in the Indian lake study 
(Bengtsson-Palme et al. 2014). These samples were taken 
as part of a survey of environments close to a pharma-
ceutical production waste treatment facility and consist of 
two samples of river sediment from upstream of the treat-
ment plant, one by the outlet, three taken downstream, 
and one from a nearby lake. These were subjected to 
shotgun metagenomic sequencing, generating 14.5–37.3 
million reads per sample.

Finally, we investigated data from the experiment 
by Lundström et al. (2016; ENA project PRJEB11402; 
https://www.ebi.ac.uk/ena/data/view/PRJEB11402), in 
which aquatic bacterial communities were investigated in 
an aquarium system exposed to different concentrations 
of tetracycline (0, 0.1, 1, 10, 100 and 1000 µg/L). The 
samples were sequenced using shotgun metagenomics to 
a depth of 122–273 million reads per sample. The experi-
ment used two replicates per concentration, meaning that 
we can only test for statistically significant trends in the 
data rather than differences between specific concentra-
tions. To quantify resistance mutations in the sequence 
data, we created a Mumame database for tetracycline 
resistance mutations in the 23S rRNA gene targeted by 
tetracycline. We extracted the mutational information re-
lated to tetracycline from the CARD “snps.txt” file and 
then built the database using mumame_build with the ad-
ditional option “-n”. We then aligned all reads from the 
Lundström et al. (2016) data to the Mumame database 
using the options “-d Tet -c 0.95 -n”. Reads were quality 
filtered and statistical differences were assessed as above.

Software evaluation

To assess the limitations of the method in terms of se-
quencing depth, the samples from the highest and lowest 
ciprofloxacin concentrations generated by Kraupner et al. 
(2018; 10 µg/L and 0 µg/L, respectively) were downsam-
pled to 1, 5, 10, 20, 30, 40, and 50 million reads. There-
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after, the reads from the downsampled libraries were 
aligned to the fluoroquinolone resistance mutation data-
base using Mumame as above. Statistical differences were 
assessed at all simulated sequencing depths and average 
effect sizes calculated for the significantly altered genes.

Results

Mumame can quantify point mutation frequencies in 
metagenomic data

As a proof-of-concept that our method to identify point 
mutations in metagenomic sequence data is functional, we 
used Mumame to quantify the mutations in amplicon data 
from the gyrA and parC genes. These genes are targets of 
fluoroquinolone antibiotics, and often acquire resistance 
mutations attaining high levels of resistance. We quanti-
fied such mutations in an amplicon data set specifically 
targeting these two genes in Escherichia coli. This data set 
derives from an exposure study with increasing ciproflox-
acin concentrations, and enrichments of mutations in the 
classical fluoroquinolone resistance determining positions 
S83 and D87 (gyrA) and S80 and E84 (parC) have pre-
viously been verified using other bioinformatic methods 
(Kraupner et al. 2018). This data set, therefore, serves as 
an ideal positive control for our novel method. We found 
that Mumame was able to identify the difference between 
the highest concentration (10 µg/L) and the lower ones re-
ported in the original study (Fig. 1). However, Mumame 
only reported an average frequency of mutations of around 
11–12% for gyrA mutations (Fig. 1A), while the original 
paper found frequencies of 60–85% (S83) and 30–40% 
(D87). The A67 position was not quantified in the original 
paper. The exact reason for the discrepancies is unknown, 
but it is likely caused by a taxonomic filtration step that 
selects for E. coli reads used in the Kraupner et al. (2018) 
study, while Mumame does not perform prior filtering. 
The decision to exclude filtering was made in order to 
mimic a situation with true metagenomic data where sev-
eral target species may co-exist. For parC, Mumame only 
quantified the S80 position (Fig. 1C), because the E84 
mutations were not included in the version of the CARD 
database used for this study. For position S80, Mumame 
identified around 35% mutated sequences at the highest 
concentration of ciprofloxacin, while the original study 
reported around 50%. When a similar E. coli filtering step 
was introduced in our analysis, the proportions were much 
closer to those in the original paper (data not shown).

We next evaluated the performance of Mumame on 
the real shotgun data that was generated from the same 
samples as the amplicon libraries. Ideally, this analysis 
should generate virtually the same result as the amplicon 
analysis. Indeed, we found similar results for the A67 and 
S83 gyrA mutations (Fig. 1B). For the D87 mutation, the 
frequencies were much lower than for the other two mu-
tations, albeit still significantly larger than at the lower 
concentrations (p < 0.01). For the parC gene, the shotgun 

metagenomic analysis had large variability within the 
sample groups, which prevented any statistically signif-
icant results (Fig. 1D). This is surprising, given that the 
total number of reads detected for both the mutant and 
wildtype variants were higher for the parC gene than for 
gyrA. Thus, the large degree of variability could poten-
tially be due to features of the parC gene. For example, 
it is possible that this gene has higher similarity to close-
ly related species, leading to that species replacement 
could influence the results. Taken together, these results 
indicate the high noise levels present for individual gene 
variants even in deeply sequenced shotgun metagenomes 
from controlled exposure studies.

The limits to quantification

Noting the much more instable levels of mutations in 
the shotgun metagenomes, we next investigated the ef-
fects of sequencing depth on the ability of our method 
to detect significantly altered mutation frequencies. For 
this analysis, we used downsampled data from the shot-
gun metagenomic library of the ciprofloxacin exposure 
study (Fig.  2). As expected, we found that the number 
of significantly altered mutation frequencies detected in-
creased with larger sequencing depth (Fig. 2A). In addi-
tion, the average effect size of the significant mutations 
became gradually lower with larger sequence depth, also 
in accordance with expectations (Fig. 2B). Importantly, 
the average effect size of detectable mutation frequency 
differences seems to decrease linearly with sequencing 
depth. This means that we can calculate an expected de-
tection limit for the method given the characteristics of 
the data and experimental setup. At 10 million reads, we 
expect that the proportion of reads with mutation must 
be 30–40% higher in the exposed sample in order for it 
to be detected as significant. This proportion decreases, 
on average, to 10% for 50 million reads (Fig. 2B). These 
numbers also depend on other factors, such as the number 
of replicates per treatment, but nevertheless they can be 
used as an approximation to aid the design of metage-
nomic studies or to interpret non-significant results de-
rived from Mumame analyses.

Tetracycline-exposed Escherichia coli populations do 
not harbor higher abundances of resistance mutations

After validating the method and testing the limit of detec-
tion, we used Mumame to quantify resistance mutations 
in a similar controlled aquarium setup under exposure to 
the antibiotic tetracycline (Lundström et al. 2016). In this 
study, no amplicon sequencing of the target gene for tet-
racycline (23S rRNA) was performed, and thus there was 
no a priori true result to which we could compare. While 
Mumame was able to successfully detect tetracycline re-
sistance mutations in the data, we somewhat surprisingly 
found no enrichment of such mutations in this data (Fig. 
3). Notably, this result was obtained despite a very high 
sequencing depth (on average 181,595,072 paired-end se-
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quences per library). Obtaining a negative result at this 
sequencing depth suggests that there actually is no enrich-
ment of known E. coli resistance mutations in the samples.

Fluoroquinolone resistance mutations in ciprofloxa-
cin-polluted sediments

As a final investigation of the performance of the method, 
we also let Mumame quantify the fluoroquinolone resis-
tance mutations in river and lake sediments polluted by 

antibiotic manufacturing waste, primarily ciprofloxacin 
(Kristiansson et al. 2011; Bengtsson-Palme et al. 2014; 
Pal et al. 2016). These libraries are fairly old and were 
not as deeply sequenced as the other data sets we inves-
tigated. While the experimental setup of these studies in 
terms of number of replicate samples per geographical 
location does not allow for proper statistical testing, we 
found overall more fluoroquinolone resistance mutations 
downstream of the pollution source, at least for the E. coli 
gyrA and parC genes (Fig. 4). We also detected a few 

Figure 1. Fluoroquinolone resistance mutations in ciprofloxacin-exposed bacterial communities. Total mutation frequencies quanti-
fied using Mumame for three known mutations conferring resistance to fluoroquinolone in the E. coli gyrA gene based on amplicon 
sequencing (A) and shotgun metagenomic data (B) from the same samples. Corresponding data for the S80 mutation in parC is 
shown in (C) for amplicon data, and (D) for shotgun data.
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such mutations in other species, but the counts of those 
were low and the results largely non-informative due to 
the small number of detections per mutation (Suppl. ma-
terial 2: Fig. S1). This serves as an example of that muta-
tions can be detected also in shallowly sequenced metag-
enomic data, but that without proper experimental design, 
interpretation of the results is difficult or even impossible.

Discussion

Metagenomics often becomes restricted to investigate 
gross compositional changes to the taxonomy and func-
tional genes of microbial communities. Unfortunately, 
this obscures important variation between individual se-
quence variants that may have large impacts on pheno-
types (Österlund et al. 2017; Bengtsson-Palme 2018). One 
example of such point mutations inducing strong pheno-
typic changes is resistance mutations in the target genes 

of antibiotics (Kraupner et al. 2018). However, including 
mutated sequence variants in the antibiotic resistance 
gene databases is complicated and can lead to gross misin-
terpretations of the data (see, for example, Ma et al. 2014). 
Still, understanding relevant variation between sequenc-
es and linking that to phenotypes is somewhat of a holy 
grail of metagenomics. This study has made clear that we 
are not yet at that point in terms of bioinformatic methods 
and sequencing depths required to draw firm conclusions. 
That said, we show in this work that using shotgun metag-
enomic data to identify significant and relevant differ-
ences in resistance mutation frequencies between sample 
groups is possible, given a sufficiently large sequencing 
effort. However, the quantitative estimates still seem to 
be highly variable, even at very large sequencing depths.

The results of the Mumame evaluation also provides 
a few other important clues on potential pitfalls with in-
ferring mutation frequencies from shotgun metagenomic 

Figure 2. Influence of sequencing depth on detected mutations and their effect sizes. Relationship between the number of investi-
gated reads and number of mutations with significantly altered frequencies (A) and the average effect size for those mutations (B); 
as assessed using Mumame on shotgun metagenomic data from a ciprofloxacin exposure experiment.

Figure 3. Resistance mutations in tetracycline-exposed bacte-
rial communities. Frequencies of E. coli tetracycline resistance 
mutations at exposure to different concentrations of tetracy-
cline, based on shotgun metagenomic data.

Figure 4. Resistance mutations in antibiotic-polluted sediments. 
Relative frequency of gyrA and parC sequences with resistance 
mutations in samples taken downstream, at, or upstream of the 
pharmaceutical production wastewater treatment plant, as well as 
in a lake polluted by dumping of pharmaceutical production waste. 
The numbers at the top of the bars show the total number of gyrA/
parC sequences (wildtype or mutated) identified in each sample.
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data. An important such aspect is the disparity between 
mutation frequencies described by amplicon sequencing 
and shotgun data. Particularly, the ability to relatively 
consistently identify the A67 and S83 mutations in parC, 
while the D87 mutation was seemingly less frequent in the 
shotgun data is somewhat troubling if the goal is to quan-
tify the actual abundances of such mutations. At the same 
time, the statistical significance of those differences could 
still be detected. For the A67 and S83 mutations, only 5 
million reads were required for a significant effect to be 
detected, while for the D87 mutations a sequencing depth 
of 50 million reads was required. This is not necessarily 
a shortcoming of the Mumame software, but may just as 
well be due to the much noisier nature of the relatively 
few counts from metagenomic sequence data compared 
to the large number of reads corresponding to the same 
genes deriving from amplicon data (Jonsson et al. 2017).

Another important potential problem highlighted by 
our evaluation is the need to produce very large sequence 
data sets to be able to identify and quantify mutated (and 
wildtype) sequences with any certainty. As a rule of 
thumb, the targeted regions represent less than 0.005% 
of the bacterial genome, and each bacterial strain may 
correspond to only a fraction of a percent of the reads in 
the shotgun sequence data (depending on its abundance). 
This means that to identify a single read from a resis-
tance region in the data, one would need to sequence, on 
average, more than five million reads. To get a reason-
ably confident measure of reads stemming from wildtype 
strains versus strains with mutations, approximately 10 
reads from each group would be needed per sample (or, 
say, 20 reads in total). That would, as a rough estimate, 
correspond to a hundred million reads per sample. This is, 
unfortunately, far more sequences than what is typically 
generated per sample by shotgun metagenomic sequenc-
ing projects. Naturally, these numbers would depend on 
the proportions of the targeted microorganisms as well as 
their genome sizes, but ultimately this still presents the 
largest limitation to mutation studies based on metage-
nomic sequence data, regardless of how sophisticated 
bioinformatics methods that are used. Potentially, this 
problem could be partially alleviated by analyzing suffi-
ciently large cohorts and performing the statistical anal-
ysis for general trends, but even large cohorts would be 
insufficient for mutations rare enough to pass below the 
detection limit.

In terms of interpreting the results from the expo-
sure experiments, it is interesting to note the overall 
clear increase of fluoroquinolone resistance mutations 
at the highest ciprofloxacin concentration, which nearly 
perfectly corresponds to increases in mobile qnr fluo-
roquinolone genes in the same samples (Kraupner et al. 
2018). This is contrasted by the trend seen in the tetracy-
cline exposure experiments, where tetracycline resistance 
genes, specifically efflux pumps, were enriched at high-
er tetracycline concentrations (Lundström et al. 2016), 
while tetracycline resistance mutation abundances were 
not significantly altered according to our investigation of 

the same sequence data. This non-significant result was 
obtained despite the exceptionally high sequencing depth 
of those samples. As suggested in the original paper, the 
apparent decrease of resistance mutations with tetracy-
cline concentration may be due to strain displacement and 
suggests that in this context these resistance mutations 
have little influence over the actual ability to tolerate in-
creasing levels of tetracycline.

While we did not have data from an experimental 
setup suitable to address differences between sediments 
exposed to different degrees of fluoroquinolone pollu-
tion, the quantification of resistance mutations seems to 
provide an important piece of information to explain the 
results of previous studies of resistance gene abundances 
in these river samples (Kristiansson et al. 2011). In the 
original paper, the abundance of mobile fluoroquinolone 
resistance genes (qnr genes) was shown to be enriched 
in the low-level polluted upstream samples, compared to 
the highly polluted downstream samples. Importantly, the 
qnr genes only provide resistance to relatively low lev-
els of fluoroquinolones (Hooper and Jacoby 2015), and 
Kristiansson et al. (2011) hypothesized that chromosom-
al mutations in the target genes are probably necessary 
to survive the selection pressure from antibiotics down-
stream of the pollution source. Our work suggests that 
this assumption is likely to be correct. Only a limited 
number of reads were aligned to these resistance regions 
and the number of samples unfortunately prevents us 
from properly assessing a statistical difference between 
the upstream and downstream samples. Still, the propor-
tions of resistance mutations seem to be systematically 
higher in the samples downstream of the pollution source, 
at least for E. coli. This indicates that the method we pres-
ent here can provide important additional information to 
metagenomic studies of resistance patterns in different 
environment types, given that a sufficient sequencing 
depth is achieved.

We have here shown the utility of the Mumame tool 
for finding resistance mutations in shotgun metagenomic 
data. In this paper, we have used the CARD database (Jia 
et al. 2017) as the information source for resistance mu-
tations, but the tool is flexible to use any source of such 
data. It is also not in any means restricted to the mutations 
investigated in this paper but is fundamentally agnostic to 
the input data. It does, however, depend on information 
on already described mutations and, thus, cannot at pres-
ent be used for de novo identification of mutations. The 
overall lack of databases comprehensively listing point 
mutations with important functional implications some-
what limits the use of Mumame in other contexts than 
detection of antibiotic resistance mutations. We hope that 
the development of this software can help spur the cre-
ation of such resources for a wider variety of biological 
functions. Mumame can be used in open screening for 
mutations in any gene present in the database in paral-
lel and can handle different mutations in both RNA and 
protein coding genes. The ability of Mumame to operate 
on the protein level enables detection of specific, func-
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tionally relevant point mutations even when the target 
genes only have limited homology. Thus, Mumame can 
be applied in a larger set of situations and is less biased 
towards well-characterized taxonomic groups. However, 
at present this feature comes at the expense of not be-
ing able to detect mutations de novo; for this task, soft-
ware such as MIDAS (Nayfach et al. 2016) or metaSNV 
(Costea et al. 2017) would be better suited. Mumame is 
flexible and fast and therefore can be implemented as a 
part of nearly any screening pipeline for antibiotic resis-
tance information in metagenomic data sets.

Conclusion

This paper presents a software tool called Mumame to an-
alyze shotgun metagenomic data for point mutations, such 
as those conferring antibiotic resistance to bacteria. Mu-
mame can distinguish between wildtype and mutated gene 
variants in metagenomic data and quantify them, given a 
sufficient sequencing effort. We also provide a statistical 
framework for handling the generated count data and ac-
count for factors such as differences in sequencing depth. 
Importantly, our study also reveals the importance of a 
high sequencing depth, preferably more than 50 million 
sequenced reads per sample, in order to get reasonably 
accurate estimates of mutation frequencies, particularly 
for rare genes or species. The Mumame software package 
is freely available from http://microbiology.se/software/
mumame. We expect Mumame to be a useful addition 
to metagenomic studies of, for example, antibiotic resis-
tance, and to increase the detail by which metagenomes 
can be screened for phenotypically important differences.
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