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Abstract

Estimating species biomass or abundance from the number of high-throughput sequencing 
(HTS) reads is an aspirational goal for DNA metabarcoding, yet studies have found varied 
correlations. Performance varies depending on the gene marker and taxonomic group and, 
in part, may be related to primer-template mismatches, which are likely to exhibit phyloge-
netic signals. In this study, we compared commonly used fragments of two gene markers 
for beetles, the mitochondrial cytochrome c oxidase subunit I (COI) and 16S ribosomal RNA 
(16S), which have similar lengths, but different propensity for primer-template mismatch-
es. We tested whether primer-template mismatches influence the relationship between 
species biomass and HTS read abundance and whether the effect of mismatches was 
explained by phylogeny. A significant correlation between species biomass and HTS read 
abundance existed for 16S, but not for COI, which had more primer-template mismatches. 
Models incorporating the effects of mismatch type or number improved the estimation of 
species biomass from HTS read abundance for COI and strong phylogenetic signals were 
identified. Researchers seeking to quantify biomass from metabarcoding studies should 
consider the effect of primer-template mismatches for the taxonomic group of interest 
and, for beetles, 16S appears a good candidate. Phylogenetic correction can also improve 
biomass estimation when using gene markers with higher primer mismatching.

Key words: Coleoptera, high-throughput sequencing, PCR amplification, phylogenetic 
signal, species biomass

Introduction

Community composition is conventionally measured by identifying organisms 
using phenotypic features. However, this approach can be constrained by the 
availability of time and taxonomic expertise, especially for speciose groups, 
such as arthropods (Yu et al. 2012; Ji et al. 2013). A shift towards DNA metabar-
coding – identifying multiple species from a mixed sample with high-throughput 
sequencing (HTS) of a DNA marker – has been shown to alleviate these con-
straints and expedite biodiversity surveys (Yu et al. 2012; Braukmann et al. 2019; 
Liu et al. 2020, 2021). However, one remaining key issue with DNA metabarcoding 
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is whether the abundance of taxa can be reliably obtained for downstream bio-
diversity modelling. Despite extensive interest, quantifying species abundance 
with metabarcoding has had limited success (Bista et al. 2018; Lamb et al. 2018; 
Nichols et al. 2018; Schenk et al. 2019). While the relative amount of HTS reads 
per species has been used as a proxy for relative species biomass (Yu et al. 
2012; Piñol et al. 2015), this assumes that extracted DNA of different species in 
a sample is proportionally amplified and sequenced relative to biomass. In turn, 
species abundance can be approximated by modelling species biomass with 
body traits at species-level (Brady and Noske 2006; Wardhaugh 2013). Some 
studies found significant positive correlations between species biomass and 
HTS read abundance with mock invertebrate samples (e.g. Krehenwinkel et al. 
(2017); Bista et al. (2018); Schenk et al. (2019)). Other studies have applied me-
tabarcoding for estimating species niche breadth, based on relative abundance 
between sampling sites. For example, by controlling specimens counts and size 
classes in metabarcoding, Lim et al. (2022) showed similar temperature niche 
conservatism for arthropod OTUs on two volcanoes of Hawaii Island. However, 
some other studies suggested the primer pairs used and sample evenness in 
mixtures were also influential (see table 1 in Piñol et al. (2019)).

The causes of quantitative biases in metabarcoding are diverse and complex. 
An important source of bias during quantitative DNA metabarcoding is the oligo-
nucleotide primer mismatch to binding sites during PCR amplification (Deagle et 
al. 2014; Nichols et al. 2018; Piñol et al. 2019). PCR amplification is less efficient 
in the presence of primer-template mismatches and primers that have fewer 
mismatches often show better amplification efficiency and a stronger correla-
tion between species biomass and HTS reads (Elbrecht et al. 2016; Piñol et al. 
2019). While binding site polymorphisms amongst species can be accommodat-
ed with degenerate primers (a mixture of primers that differ subtly in sequences), 
primer-template mismatches might be unavoidable in phylogenetically diverse 
samples, where DNA metabarcoding is particularly valuable relative to morpho-
logical species identification (Braukmann et al. 2019). Additionally, amplification 
efficiency (and thus the number of HTS reads) is also influenced by the type and 
position of primer-template mismatches (Stadhouders et al. 2010; Elbrecht et al. 
2017); for example, mismatches are more detrimental at the primer 3’ end than 
at the 5’ end (Bru et al. 2008; Boyle et al. 2009). Other sources of bias during 
quantitative DNA metabarcoding also include polymerase bias for templates 
with certain base composition (Nichols et al. 2018), GC content variations of 
the amplified template, length differences between gene marker fragments and 
variation in copy number. Nichols et al. (2018) showed that DNA polymerases 
have preference for certain GC content which can dramatically affect the rel-
ative abundance estimation. Unlike the cytochrome c oxidase subunit I (COI), 
the stem-loop structure in 16S is likely to cause considerable amplicon length 
differences between different taxa. This may also bias the amplification efficien-
cy. Last, mitochondrial copy number can vary significantly between different 
species and even ontogenetic stages of individual species (Kembel et al. 2012). 
Such copy number variation between taxa can also influence read abundance.

Quantification correction factors have been proposed to address amplifi-
cation bias. For example, order-specific correction factors were developed 
using mock arthropod samples and the correlations between corrected HTS 
read abundance and input DNA increased from 0.09 to 0.82 (Krehenwinkel et 
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al. 2017). A similar approach of generating correction factors was also tested 
with a library of DNA barcoded species for seal prey and then validated with 
real-world prey samples (Thomas et al. 2016). While correction factors devel-
oped from known samples can account for multiple sources of bias, it rep-
resents substantial additional workload and, in samples of unknown species 
composition, it is difficult to apply a certain correction.

Given that the evolution of primer site mismatches amongst species likely 
followed similar phylogenetic trajectories to the species themselves, knowledge 
of phylogenetic relationships has potential value for improving biomass esti-
mation from HTS reads. In other words, closely-related taxa are more likely to 
share primer-template mismatches and deviation from an overall biomass-HTS 
read abundance relationship. Such phylogenetic signal has been identified in 
other sources of quantitative metabarcoding bias, such as gene copy number 
(Kembel et al. 2012), suggesting phylogenetic approaches could correct other 
sources of bias, such as those created by primer site mismatches. Furthermore, 
many DNA metabarcoding studies exploit reference DNA sequences for species 
identification (e.g. the COI barcoding region) and, hence, these data can also 
be used to estimate phylogenetic relationships and to quantify primer-template 
mismatches when smaller internal fragments are amplified for metabarcoding.

In this study, we tested whether primer-template mismatches influenced 
the relationship between biomass and HTS reads and whether the relation-
ship could be explained by phylogeny. We used DNA fragments from two mito-
chondrial gene markers, the COI and 16S ribosomal RNA (16S) genes. These 
fragments had similar lengths (157 bp and 124–165 bp, respectively), but COI 
had more primer-template mismatches than 16S (Deagle et al. 2014). Our aims 
were to: (1) examine how variation in the number of primer-template mismatch-
es impacts estimation of species biomass in PCR-based DNA metabarcoding 
and (2) quantify the phylogenetic signal in primer-template mismatches and 
deviation from a species biomass-HTS read abundance relationship. The mag-
nitude of phylogenetic signal indicates the potential for phylogenetic-based 
biomass correction. We analysed DNA metabarcoding data derived from a 
study assessing recovery of beetle communities following forest harvesting 
(Liu et al. 2020), as analyses of mock samples are typically based on unrealis-
tically simple samples, which may reduce the applicability of their inferences.

Methods

We re-analysed the high-throughput sequencing datasets in Liu et al. (2020). 
These were derived using primer sets for COI (ZBJ-ArtF1c/ZBJ-ArtR2c; 
Zeale et al. (2011)) and 16S (modified Ins16S_1 short set; forward: 5’-AGAC-
GAGAAGACCCTATAGA-3’; reverse: 5’-TACGCTGTTATCCCTAAGGTA-3’; Clarke 
et al. (2014)) to amplify similar length DNA fragments (157 bp for COI and 
124–165 bp for 16S) from field-collected beetle samples. The samples rep-
resented pitfall-trapping collections from 12 regeneration forests and 12 
neighbouring mature forests, containing 173 morphologically identified beetle 
species. The bioinformatic pipeline was the same as that of Liu et al. (2020) 
unless otherwise stated. A full description of the bioinformatic pipeline is 
provided in the Suppl. material 1. In brief, our bioinformatic pipeline includ-
ed raw sequence demultiplexing, quality control and clustering of zero-radius 
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OTUs (ZOTUs) and taxonomic assignment. First, raw sequences were demul-
tiplexed by sample identifiers on the Miseq. Fastq reads were then merged 
and trimmed. Reads that had unused identifiers or contained any mismatch of 
sample-specific identifiers were discarded. Second, retained reads were qual-
ity filtered to remove low quality reads and the UNOISE algorithm was used to 
cluster unique reads into ZOTUs. Third, taxonomic assignment was performed 
for ZOTUs with BLASTn using an e-value cut-off of 1e-4 for both gene markers. 
We used Sanger sequencing to generate a local reference library representing 
150 COI sequences and 181 16S sequences for 92 and 96 beetle species, 
respectively, from pilot sampling along a forest chronosequence. Reference 
sequences were also downloaded from the Barcode of Life Database (BOLD; 
Ratnasingham and Hebert 2007) and NCBI (NCBI Resource Coordinators 
2018). Particularly, we curated COI ZOTUs, based on sequence similarity and 
co-occurrence using the LULU algorithm to reduce the inflated number of ZO-
TUs that had same taxonomic assignment (Froslev et al. 2017). For this study, 
we only included ZOTUs that had ≥ 99% sequence identity to a species in the 
reference database, from which the number of primer-template mismatches 
could be calculated. In total, 22 and 25 ZOTUs that had ≥ 99% sequence match 
identity to reference species were identified for COI and 16S, respectively. Our 
downstream analyses were limited to these species to enable a comparison 
of biomass and HTS read abundance (Suppl. material 2).

Primer-template mismatches were scored using existing reference sequenc-
es. The total number of primer-template mismatches is likely to oversimplify 
models estimating species biomass with HTS read abundance (Elbrecht et al. 
2017). Therefore, we accommodated the effects of different types and posi-
tions of each primer-template mismatch (see Table 1, Suppl. material 3) by 
weighting with different scores as per Elbrecht et al. (2017), providing contin-
uous variables that scale according to predicted impact on primer annealing. 
This scoring system was based on Stadhouders et al. (2010), which quantita-
tively investigated the effects of primer-template mismatches within the 3’ end 
primer region on real-time PCR using different commercially available 5-nucle-
ase assay master mixes. The mismatch position was scored because those 
near the 3’ end of primer-template binding region would have a greater impact 

Table 1. Variables used in modelling HTS read abundance, based on species biomass and primer-template mismatches.

Term Description

Dependent variable

HTS read abundance Average sum of HTS reads for each species

Independent variables

Species biomass Average weight (in grams; to 4 decimal places) of specimens for a species across samples

Mismatch number Count of primer-template mismatches

Mismatch position Sum of mismatch scores based on their positions relative to the 3’ primer end†

Mismatch type Sum of mismatch scores based on their type†

Deviation of predicted HTS 
read abundance

Residual in the linear model log10(HTS read abundance) ~ log10(species biomass)

†: Schemes derived by Elbrecht et al. (2017) and summarised in Suppl. material 3.
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on PCR amplification efficiency than at the 5’ end (Stadhouders et al. 2010; 
Piñol et al. 2015). Likewise, the type of mismatch was recorded and scored 
because some varieties (e.g. A-A, G-A and C-C) more severely impact PCR am-
plification efficiency than others (e.g. A-C and T-G) (Stadhouders et al. 2010; 
Elbrecht et al. 2017).

We retrieved original species biomass and HTS read abundance from each 
of the 24 samples. Then, our analysis was based on these data to model the 
relationship between them along with the information of primer-template mis-
matches. For example, we would have multiple data for a given species if they 
were present in multiple samples. Data were normalised and expressed as rel-
ative proportions by dividing the total HTS read abundance and total sample 
biomass by the original HTS read abundance and species biomass for each 
of the 24 samples. We have provided the original species abundance and their 
HTS read abundance across 24 samples in Suppl. material 2. We used linear 
regression models (‘lm’ function) to test the relationship between HTS read 
abundance (response variable) and species biomass and primer-template mis-
matches as predictor variables (continuous fixed effects; Table 1). For each of 
COI and 16S, we developed eight alternative models of HTS read abundance 
(Table 2). The models were compared using Akaike’s Information Criterion cor-
rected for small sample sizes (AICc) and the predictor variable in a model of 
ΔAICc < 2 was considered to have significant explanatory power (Arnold 2010). 
The residuals in the models of relative proportion of HTS read abundance ~ 
relative proportion of species biomass represented the deviation of HTS read 
abundance from that predicted with species biomass alone and were consid-
ered a proxy measure of the effect of primer-template mismatch.

In order to examine the phylogenetic effect of primer-template mismatches, 
we constructed a phylogenetic tree with reference DNA sequences of partial 
COI and 16S genes. Two species from the order Neuroptera (Apochrysa mat-
sumurae, GenBank Accession: NC_015095 and Ascaloptynx appendiculatus, 
GenBank Accession: NC_011277) were selected as outgroups, based on Misof 
et al. (2015). A Maximum Likelihood tree was built under the GTR + Γ + I nucleo-
tide substitution model with raxmlGUI version 2.0 (Stamatakis 2014; Edler et al. 
2019). We used the “contMap” function in the phytools package (Revell 2012) 
to create and visualise ancestral state reconstruction under Brownian motion 
evolution of quantitative traits. For each gene marker, we applied this practice 
to the number of primer-template mismatches and the residuals of relative pro-
portion of HTS read abundance ~ relative proportion of species biomass. To 
test for phylogenetic signal, phylogenetic mixed models were performed with 
the brm package (Bürkner 2017). Phylogenetic signal (λ; Pagel (1997, 1999)) 
was separately calculated for relative proportion of species biomass, relative 
proportion of HTS read abundance, number of mismatches and the residuals 
described above, using the “phylosig” function in phytools. High values of λ 
(approaching 1) indicate that closely-related species have very similar trait val-
ues and λ = 0 indicates that trait values are randomly distributed across the 
phylogeny. The substitution rate is known to saturate quickly for the third codon 
position in protein-coding genes and, thus, contain homoplastic information 
(Shao et al. 2003; Lin and Danforth 2004). Therefore, the phylogenetic signal 
was particularly tested for the first and second codons of the COI gene. All 
statistical analyses were performed using R version 4.1.1 (R Core Team 2020).

http://www.ncbi.nlm.nih.gov/nuccore/NC_015095
http://www.ncbi.nlm.nih.gov/nuccore/NC_011277
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Results

The total number of mismatches in the forward and reverse COI primer ranged 
from 0–7 across their 22 ZOTUs (mean ± SD = 3.1 ± 2.1), whereas there were 
only 0–3 mismatches for the 16S primer pair across their 25 ZOTUs (0.8 ± 1.2, 
Fig. 1). For COI, the best model for HTS read abundance incorporated the ef-
fects of species biomass and primer-template mismatch position, where mis-
matches at the 3’ end of a primer affected PCR amplification efficiency more 
severely than at the 5’ end (Model 1, Table 2). However, HTS read abundance 
was not significantly predicted by species biomass alone for COI (Model 6, 
Table 2; Fig. 1), nor by mismatch position alone (Model 8, Table 2). Other mod-
els that significantly predicted HTS read abundance had either mismatch type 

Table 2. Alternative linear models of relative proportion of HTS read abundance, based on the relative proportion of spe-
cies biomass and/or primer-template mismatches for COI and 16S datasets. The best model as determined with lowest 
AICc value is highlighted in bold.

Marker Model Variable Adj. R2 P ΔAICc

COI #1 Relative proportion of species biomass 0.30 0.55 0

Mismatch position 0.04*

Mismatch type < 0.001***

#2 Mismatch type 0.24 < 0.001*** 1.92

#3 Relative proportion of species biomass 0.25 0.19 2.36

Mismatch type < 0.001***

#4 Relative proportion of species biomass 0.18 0.12 7.85

Mismatch number < 0.01**

#5 Mismatch number 0.16 < 0.01** 8.04

#6 Relative proportion of species biomass 0.02 0.16 17.05

#7 Relative proportion of species biomass 0.01 0.12 18.52

Mismatch position 0.37

#8 Mismatch position -0.01 0.59 18.83

16S #1 Relative proportion of species biomass 0.42 < 0.001*** 0

Mismatch position 0.11

Mismatch type 0.02*

#2 Relative proportion of species biomass 0.41 < 0.001*** 0.46

Mismatch type 0.08

#3 Relative proportion of species biomass 0.39 < 0.001*** 1.46

#4 Relative proportion of species biomass 0.39 < 0.001*** 3.41

Mismatch number 0.65

#5 Relative proportion of species biomass 0.39 < 0.001*** 3.61

Mismatch position 0.91

#6 Mismatch type 0.02 0.08 51.07

#7 Mismatch position -0.01 0.68 54.13

#8 Mismatch number -0.01 0.88 54.29

Significance codes: *: 0.01 ≤ P < 0.05; **: 0.001 ≤ P < 0.01; *** P < 0.001.
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(Model 2) or mismatch number (Model 5) as single predictors or in combina-
tion with species biomass (Model 4).

For 16S, HTS read abundance was significantly predicted by species bio-
mass alone (Model 3, R2 = 0.39, P < 0.001, Table 2), although there was slight-
ly better model fit (ΔAICc < 2) for the best model which included mismatch 
position and mismatch type (Model 1, Table 2). Models including mismatch 
type (Model 2), mismatch number (Model 4) or mismatch position (Model 5) in 
combination with species biomass were not significant. In isolation, mismatch 
type, mismatch position or mismatch number also did not significantly predict 
HTS read abundance (Models 6, 7 and 8, Table 2).

The phylogenetic mixed models showed a strong signal for the COI dataset 
(posterior mean and 95% credible intervals for h

‸
2 = 0.64 (0.31–0.87)) and, hence, 

the tendency for similar correlation between relative HTS read abundance and 
relative species biomass amongst closely-related species. However, such phy-
logenetic signal was not observed for the 16S dataset (h

‸
2 = 0.37 (0–0.89)). The 

mismatch type and mismatch number both showed strong and significant phy-
logenetic signals for COI (all codons: λ = 0.79 and 0.72, P < 0.001; first and sec-
ond codons together: λ = 0.85 and 0.87, P < 0.05;), but not for 16S (Table 3). 
While there was no statistically significant phylogenetic signal in the COI model 
residuals of relative proportion of HTS read abundance ~ relative proportion of 
species biomass, visualisation of ancestral state reconstruction showed that 
higher number of primer-template mismatches were mostly corresponded with 
under-represented HTS read abundance (i.e. negative residuals) (Fig. 2A). This 
is also suggested by the significant phylogenetic signal of mismatch number 
(Table 3). For example, the Carabidae COI clade had fewer primer-template mis-
matches and higher residuals of relative proportion of HTS read abundance ~ 
relative proportion of species biomass, while Staphylinidae, Nitidulidae and Cur-
culinoidae had lower residuals of relative proportion of HTS read abundance ~ 

Figure 1. Linear regression models showing the direct relationship between relative proportion of HTS read abundance 
~ relative proportion of species biomass for (A) COI and (B) 16S. The model fit was improved in each case by including 
terms relating to primer-template mismatches (Table 2). Insert boxplots showing the number of template-primer mis-
matches for each species in the COI and 16S dataset, respectively.
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relative proportion of species biomass and more primer-template mismatches 
(Fig. 2A). However, there were a few disparities where the carabids Pentagonica 
vittipennis and Percosoma carenoides showed opposite patterns. In comparison, 
ancestral state reconstructions of 16S model residuals of relative proportion of 
HTS read abundance ~ relative proportion of species biomass bear little rela-
tionship to the pattern of primer-template mismatches (Fig. 2B), nor did it exhibit 
a phylogenetic signal (Table 3). For instance, both Carabidae and Staphylinidae 
had very low (mostly zero) primer-template mismatches for 16S, yet the Carabi-
dae had mostly negative residuals, while the Staphylinidae had mostly positive 
residuals from the model of relative proportion of HTS read abundance ~ relative 
proportion of species biomass. It should be noted that the phylogenetic tree in 
our study is reconstructed with reference DNA sequences of COI and 16S and it 
is not ultimately resolved as monophyletic for Staphylinidae. Last, the magnitude 
of variation in residuals and mismatches is clearly much lower for 16S (Fig. 2).

Discussion

To date, attempts to quantify species’ biomass and abundance from HTS read 
abundance have had limited success (Krehenwinkel et al. 2017; Bista et al. 
2018; Lamb et al. 2018; Schenk et al. 2019). Our real-world application of DNA 
metabarcoding showed that primer-template mismatches had an impact on the 
efficacy of COI in estimating species biomass and only little impact on that of 
16S. In particular, our models supported the hypothesis that gene markers with 
fewer primer-template mismatches are likely to enable more reliable estima-
tion of species biomass (Elbrecht et al. 2016; Piñol et al. 2019). However, mark-
er selection often represents a compromise of multiple objectives (Elbrecht 
et al. 2016). While 16S was better at estimating species biomass in our study, 
taxonomic resolution using this marker may be lower due to less complete ref-
erence sequence databases compared to COI (Elbrecht et al. 2016), with down-
stream implications regarding study power (Liu et al. 2020). Likewise, if primer 
mismatches correlate with broader DNA fragment variation, biomass quantifi-
cation accuracy may come at the expense of taxonomic resolution.

Table 3. Phylogenetic signal (Pagel’s λ) of predictor variables for the COI dataset. “Residuals” are derived from the model 
of relative proportion of HTS read abundance ~ relative proportion of species biomass. Variables ranked by Pagel’s λ from 
highest to lowest. A higher Pagel’s λ suggests stronger phylogenetic signal (more similar traits in more closely related taxa).

Variable λ P
Mismatch number (first and second codons) 0.87 < 0.05*
Mismatch type (first and second codons) 0.85 < 0.05*
Mismatch position (first and second codons) 0.00 1.00
Mismatch number (all codons) 0.72 < 0.001***
Mismatch type (all codons) 0.79 < 0.001***
Mismatch position (all codons) 0.04 0.74
Residuals 0.17 0.25
Relative proportion of HTS read abundance 0.14 0.33
Relative proportion of species biomass 0.00 1.00

Significance codes: *: 0.01 ≤ P < 0.05; **: 0.001 ≤ P < 0.01; *** P < 0.001.
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Figure 2. Correspondence between the model residuals of relative proportion of HTS read abundance ~ relative propor-
tion of species biomass (left hand side) and the number of primer-template mismatches (right hand side) on phylogenet-
ic trees for (A) COI and (B) 16S datasets. Species with lower number of primer-template mismatches are likely to have 
higher PCR amplification efficiency and produce relatively more HTS reads.

Our study showed the potential of phylogenetic approaches to improve bio-
mass quantification with COI. The number and type of COI primer-template 
mismatches exhibited significant phylogenetic signals which may be stronger 
with a denser sampling of related taxa and improved reference sequence data-
bases. The number of mismatches was also associated with the model resid-
uals of relative proportion of HTS read abundance ~ relative proportion of spe-
cies biomass. This raises the possibility of phylogenetically corrected biomass 
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estimation for gene markers like COI with more primer-template mismatches. 
The lack of a significant phylogenetic signal in either mismatch position or the 
model residuals of relative proportion of HTS read abundance ~ relative pro-
portion of species biomass may be due to the relatively small number (n = 22 
or 25) of species considered (a subset of data due to the quality of the refer-
ence sequence collection). We expect the phylogenetic signal to be stronger 
for larger datasets across distinct clades (Kembel et al. 2012; Krehenwinkel 
et al. 2017). However, for closely-related taxa, a smaller phylogenetic effect 
is expected. More complete reference databases will help inform researchers 
whether phylogenetic adjustment will be useful for their project.

It has been suggested that considering only the total number of primer-tem-
plate mismatches oversimplifies their effects on amplification efficacy (El-
brecht et al. 2017) and, therefore, taking into account mismatch type and posi-
tion might improve biomass estimation. We are aware of only one other study 
considering mismatch position relative to the 3’ end of primers (Piñol et al. 
2019) and their simulations showed similar quantification accuracy to those 
based on mismatch numbers. For our COI dataset, including mismatch posi-
tion with species biomass had similar explanatory power for HTS read abun-
dance as the analogous model with mismatch number. However, mismatch 
type had no significant impact, perhaps reflecting the small values derived from 
the mismatch type weighting scheme compared to mismatch number and mis-
match position.

Our study did not explore other factors, such as annealing temperature and 
cycle number during PCR amplification and lower annealing temperatures, in 
particular, have improved biomass quantification during metabarcoding (Si-
pos et al. 2007). Factors other than primer-template mismatches also likely 
contribute to variation in the relationship between HTS read abundance and 
species biomass, such as DNA extraction efficiency, mitochondrial DNA copy 
number and amplicon GC content (Stadhouders et al. 2010; Kirse et al. 2023). 
Additionally, the different morphology amongst taxa, especially in complex 
communities (e.g. in exoskeletons or surface area to volume ratios), is an ad-
ditional source of variation in DNA extraction efficiency. Further limitations are 
that we only used one primer pair for COI and 16S, respectively and our study 
was restricted to beetles. While more primers should be tested and on a wider 
range of species, we anticipate similar patterns to what we observed. Other 
primers for COI will consistently incur primer-template mismatches across 
more degenerate codon positions (i.e. third codon), while 16S primers are typi-
cally designed in more conserved ribosomal RNA coding regions (Deagle et al. 
2014). In addition, our studied species were only a subset of reliably identified 
beetles from a single HTS run and, therefore, might not necessarily reflect their 
actual competition for amplification and sequencing that occurred amongst 
all species within the sample. Studying samples of known species that have 
reference sequences, but not mock samples of low diversity, could, therefore, 
help further clarify the relationships amongst mismatches, phylogeny and HTS 
read abundance.

Multiple mismatches are common in primers and COI primers with high de-
generacy have become popular for arthropod metabarcoding (Elbrecht et al. 
2019). The COI primers used in our study are non-degenerate and could have 
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an amplification bias for some arthropod lineages (Elbrecht et al. 2019). Am-
plification bias is less likely an issue for highly degenerate primers. In addition, 
Elbrecht and Leese (2017) have shown that highly degenerate primers have 
good efficacy in species identification while providing with a consistent and 
equal read abundance estimation across mock samples. However, cocktails of 
degenerate primers increase the chances of simultaneously amplifying a lot of 
non-target lineages (e.g. bacterial; Mioduchowska et al. (2018); Zafeiropoulos 
et al. (2021)) in an arthropod sample, depending on sample quality. Recent ad-
vances in environmental DNA metabarcoding have made it possible to monitor 
eDNA concentrations of multiple species. For example, by using internal stan-
dard DNAs, positive linear correlations are found between the sequence reads 
and the copy numbers of standard DNAs in marine fishes (Ushio et al. 2018; 
Sato et al. 2021).

Overall, our study demonstrates a phylogenetic basis of quantification bias-
es from DNA metabarcoding and suggests an opportunity for correcting such 
biases based on phylogeny. Taxon-specific correction factors can be derived 
from mock samples by fitting a regression line for the correlation of input spe-
cies biomass and recovered HTS read abundance while accounting for phylog-
eny (Krehenwinkel et al. 2017). An alternative approach is to focus on markers 
with few primer-template mismatches. Thus, the significant correlation be-
tween HTS read abundance and species biomass found in the 16S dataset was 
also supported in a similar study on this gene (Elbrecht et al. 2016). However, 
future studies on quantitative metabarcoding should navigate the trade-offs of 
using alternative DNA markers. The quantitative performance should be con-
sidered in line with the available reference sequence data or need to generate 
new reference sequences and the ease of bioinformatic filtering (Andujar et al. 
2018). With improved taxonomic coverage of 16S in reference datasets, this 
marker may be a good candidate for estimating species abundance in PCR-
based DNA metabarcoding studies.
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